
Citation: Pajor-Świerzy, A.;

Szyk-Warszyńska, L.; Duraczyńska,
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Abstract: The UV-Vis sintering process was applied for the fabrication of conductive coatings com-
posed of low-cost nickel–silver (Ni@Ag) nanoparticles (NPs) with core–shell structures. The metallic
films were formed on a plastic substrate (polyethylene napthalate, PEN), which required their sinter-
ing at low temperatures to prevent the heat-sensitive polymer from destroying them. The UV-Vis
sintering method, as a non-invasive method, allowed us to obtain metallic coatings with good con-
ductivity at room temperature. In optimal sintering conditions, i.e., irradiation with a wavelength of
350–400 nm and time of 90 min, conductivity corresponding to about 30% of that of bulk nickel was
obtained for the coatings based on Ni@Ag NPs.

Keywords: nickel–silver core–shell nanoparticles; UV-Vis sintering; conductive coatings

1. Introduction

The development of the global electronics industry market is associated with an
increase in demand for new materials characterized by high conductivity, reproducibility,
and low production costs. In this context, the low-temperature and efficient technologies
used in the process of fabricating printed electronic circuits based on low-cost metallic
nanoparticles have attracted significant interest. This issue is important not only from an
economic point of view but also with regard to the fabrication of flexible electronic devices,
such as organic light-emitting diode (OLED), radio frequency identification (RFID) tags,
flexible solar cells, displays, and wearable electronics [1–5], in which, due to the use of heat-
sensitive substrates, a low sintering temperature is required. The application of common
polymers, such as polyethylene terephthalate (PET), polyimide (PI), and polyethylene
terephthalate glycol (PETG), as substrates is a pathway to a wide variety of efficient and
cheap electronic devices.

The most important component of inks used for the fabrication of printed electronic
circuits and devices is an active material, which is responsible for the conductive prop-
erties of printed patterns. Metallic nanoparticles (NPs) can lower the temperature of
the preparation process of conductive materials due to their much lower melting point
compared to their form at macro size. Therefore, they have commonly been used as the
main compound of inks for the printing process of electronic patterns [1,4,6–9]. The ink
based on metallic NPs is deposited onto proper substrates using a printing or coating
process, and as a result of this process, a pattern composed of conducting metallic NPs
capped with insulating organic stabilizers is formed. Due to the presence of such insulat-
ing organic materials, the number of percolation paths is limited, and the resistivity of
the printed pattern is usually too high for use in practical applications. This obstacle is
conventionally overcome via a post-printing sintering process, which is mainly achieved
by heating the printed substrates to temperatures usually higher than 200 ◦C [9–11]. This
sintering phenomenon is usually attributed to the reduced melting point of NPs and
the high self-diffusion coefficient of their atoms [12]. However, due to the sensitivity of
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flexible substrates (papers and many plastics) to high temperatures, treatment involving
heating at high temperatures is not required [1]. Therefore, there is a great need for a
technology that will enable the sintering of the metallic NPs at low temperatures or even
without heating to avoid the destruction of the heat-sensitive substrates, as well as lower
the costs of the process of fabricating printed electronics.

As promising alternatives to thermal sintering, chemical [13–16] and radiation-induced
sintering have been considered [17–19]; accordingly, the chance of thermal damage can
be significantly minimalized. Among radiation-induced sintering methods, laser and
ultraviolet (UV/UV-Vis) sintering processes were proposed. The wavelength of a laser can
be adjusted to specific particle/substrate system; moreover, the pulse width of a laser can
be as short as a femtosecond. The laser-sintered thin films composed of Cu NPs with good
electrical properties were obtained by Known et al. [17]. They noticed that such a method
ensures the rapid fabrication of conductive films with the suppression of the oxidation
process of Cu NPs. Noha et al. [18] compared nanosecond to femtosecond laser sintering of
Ag NPs films deposited on polyethylene terephthalate (PET) substrates, putting emphasis
on the sintering mechanisms and the properties (electrical conductivity, flexibility, and
adhesion strength) of the sintered film. The lower resistivity of laser-sintered Ag film was
obtained after femtosecond laser sintering in comparison to the nanosecond process. The
lowest resistivity of the Ag film sintered with the femtosecond laser sintering process was
7.07 µΩ·cm. The parameters of the laser sintering process of circuits based on Cu NPs on
PET substrates were optimized by Hernandez-Castaneda et al. [19]. The lowest values of
resistivity were obtained for the green laser (λ = 532 nm) at the lowest laser fluence and
the diode laser (λ = 808 nm) with the lowest power density. This laser fabrication process
was also applied for the preparation of Ni electrodes combined with a colorless polyimide
substrate, which offers significant potential for wider applications using high-temperature
transparent heaters [20]. Bischoff et al. [21] produced the copper layers from the ball milling
of a CuO NP precursor with a sheet resistivity of 0.2780 Ω/sq via the femtosecond laser
reductive sintering process. Besides its application in the electronics industry, the laser
sintering process can be also used for the fabrication of biosensors. The micropatterns
based on Cu and Ni on the surface of glass-ceramics via the reduction of CuO and NiO NPs
using the selective laser sintering (SLS) method were manufactured by Tumkin et al. [22].
The fabricated electrode with good selectivity, long-term stability, and reproducibility can
be used as the potential non-enzymatic glucose sensor.

Even if laser sintering is the fastest and most effective method for obtaining conductive
structures, it has a small local sintering area and requires an expensive and sophisticated
system. To solve this problem, the UV/UV-Vis sintering method of films composed of
metallic nanoparticles was also proposed. After one UV/UV-Vis sintering run, a resistivity
of 8.8 µΩ·cm, similar to that obtained after the thermal sintering process at 200 ◦C, was
obtained. It was also noticed that after eight UV/Vis sintering runs, the value of resistivity
of silver patterns decreased, and it was as low as four times that of bulk silver [23]. The
photothermal sintering process using a low-power UV light source with a wavelength of
395 nm was used to transform the ink composed of silver NPs into solid conductive films
with an average resistivity of 0.48 µΩ·m after 30 s of UV irradiation, which was lower in
comparison to that after 15 min of oven sintering at 130 ◦C [24]. Visible light (LED) was also
applied to sinter silver nanoparticles for solvent-resistant nanofiltration (SRNF) membrane
preparation [25]. A flash-light process was used for sintering the films composed of Ni
NPs; however, the obtained resistivity was found to be 76.34 µΩ·cm [26].

In this work, the applicability of the UV-Vis irradiation for the sintering of the coatings
composed of nickel–silver core–shell (Ni@Ag) NPs was examined. Ni@Ag NPs with
average sizes of 220 nm were deposited on a polyethylene napthalate (PEN) substrate,
namely the heat-sensitive substrate, and the UV-Vis sintering process was performed.
The effects of the wavelength of the UV-Vis irradiation and the time of sintering on the
resistivity of the deposited metallic coatings were investigated. The formation of well-
conductive coatings based on Ni@Ag NPs using the UV-Vis sintering process, to the best
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of our knowledge, is reported for the first time and may represent a new approach for
obtaining low-cost printed flexible electronics.

2. Materials and Methods
2.1. Materials

Nickel sulfate hexahydrate (NiSO4·6H2O), sodium borohydride (NaBH4), sodium car-
boxymethyl cellulose (NaCMC) with MW 90000, silver nitrate (AgNO3), and aminomethyl
propanol (AMP) were purchased from Sigma-Aldrich (Poznań, Poland). The wetting agent
(BYK 348, silicone surfactant) was produced by BYK-Chemie GmbH (Wesel, Germany).

2.2. Fabrication of Metallic Ink

In the process of the preparation of metallic ink, firstly, Ni@Ag NPs were obtained
using a synthesis method presented in our previous works [27–29]. Firstly, using a “wet”
chemical reduction process, nickel NPs were obtained as the core of the core@shell structure.
In the next stage, on the surface of synthesized Ni NPs, silver ions were reduced, and as
the result of such a transmetalation (displacement) reaction, Ni@Ag NPs were formed. The
methodology of the preparation of Ni@Ag NPs was described in detail in our previous
papers [27–29]. To remove the excess of stabilizer and other additives, the obtained disper-
sion of Ni@Ag NPs was washed with distilled water and concentrated to 25 wt% via the
centrifugation/redispersion process (two times). Then, BYK 348 (0.05 wt%), as a wetting
agent, was added, which was followed by an ultrasonication process (30 min at 20 kHz) to
obtain homogeneous ink.

2.3. Preparation of Conductive Coatings

The ink formulation was deposited on PEN substrates (Kaladex® PEN 2000, DuPont
Teijin Films, Redcar, North Yorkshire, UK) with sizes of 0.3 × 0.2 × 0.125 mm by bar
coating with the use of K-Hand Coater (Kontech, Łódź, Poland) [30]. Before the ink coating
process, the polymeric substrate was washed with isopropanol and distilled water and
dried with compressed air. The deposited ink coatings (at the size as the substrate area)
were dried on a hot plate at 80 ◦C for 15 min and finally sintered using a lamp with UV-Vis
irradiation (Osram, Warsaw, Poland) at the wavelength regime of 300–700 nm and power
of 2.90 mW/cm2. The UV-Vis system was equipped with a cooling system to avoid heating
the sample during irradiation. The temperature during the UV-Vis sintering process was
controlled, and it was 28 ◦C.

2.4. Characterization

The size of Ni@Ag NPs was measured via dynamic light scattering (DLS), using
Zetasizer Nano Series (Malvern Instruments, Malvern, Worcestershire, UK) as the value of
the three runs with at least 20 measurements at 25 ◦C. The topographical and morphological
properties of the obtained coatings were visualized via an optical microscope (HR-2500)
and via Scanning Electron Microscopy (SEM, LEO Gemini 1530, Zeiss, Jena, Germany). The
molecular structure and the functional groups of CMC, as well as the components of the
coatings based on Ni@Ag NPs before and after the UV-Vis sintering process, were identified
using Fourier Transform Infrared Spectroscopy (FTIR) performed using a ThermoFisher
Nicolet iN10 microscope cooled with liquid nitrogen at a frequency ranging from 4000 cm−1

to 500 cm−1. The samples of CMC- and nanoparticle-based films were deposited on the
top of the gold-covered glass microscope slides, which were prepared using the Turbo
Sputter Coater K575X (Quorum Emitech, South Stour Avenue, Ashford, Kent TN23 7RS).
The glass slides were first coated with 10 nm of Cr, followed by 50 nm of Au. The thickness
of deposited metallic films was measured via the EDXRF technique (FISCHERSCOPE
X-RAY XDL 230, Worcestershire, UK). The values of the sheet resistance of UV-Vis sintered
metallic coatings were measured using a four-point probe method (Milliohm Meter, Extech
Instruments, Nashua, NH, USA). In this technique, the sheet resistances were automatically
measured as four equally spaced measures via the manual contact of the colinear Calvin
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probes with the coated films, resulting in electrical contact [31]. Then, by multiplying the
measured values of the sheet resistance by the thicknesses of the coatings, their resistivities
were calculated [32].

3. Results and Discussion

In our previous works [27,28] regarding the sintering of metallic coatings composed of
Ni@Ag NPs, we mainly focused on thermal sintering; however, a chemical process was also
investigated. In the case of thermal sintering (300 ◦C), the calculated value of the resistivity
of films, composed of Ni@Ag NPs at the average size of about 220 nm, was 14.4 µΩ·cm,
which corresponds to the conductivity of 48% of that for bulk nickel [28]. In order to avoid
such a high-temperature process, the effect of oxalic acid (OA) as a chemical sintering
method was investigated [29]. Treating the coatings composed of 220 nm of Ni@Ag NPs
with 1% of OA allows the significant decrease in temperature needed to obtain conductive
coatings from 300 to 100 ◦C. Such coatings showed a resistivity of 30 µΩ·cm, only four
times higher than that of the bulk nickel. Treatment with OA is a promising approach
for the application of such metallic films in flexible electronics. It is also important from
an economic point of view, as energy consumption should be as low as possible. In this
context, our research seeks to replace the thermal method used for the radiation-induced
sintering of metallic coatings. Therefore, in this paper, the effect of the UV-Vis sintering
process on the conductive properties of films based on Ni@Ag NPs was studied. The
scheme of the fabrication of conductive coatings based on Ni@Ag NPs is shown in Figure 1.
As can be seen, such coatings were prepared in a multistep process: ink was formulated,
ink was deposited on the polymeric substrate, and, finally, UV-Vis sintering was performed
to transform the non-conductive structure into conductive coatings.
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Figure 1. Scheme of the fabrication of the conductive coatings based on Ni@Ag NPs by using UV-Vis
sintering process.

The process of the synthesis of Ni@Ag NPs, which involved a two-step reaction, was
developed in our laboratory and presented in our previous papers [27–29]. In the first
step, using a “wet” chemical reduction process, the Ni ions in the complex with AMP
and citric acid were reduced, using NaBH4 as a reducing agent and in the presence of
sodium carboxymethyl cellulose (0.5%) as a stabilizer, to obtain Ni NPs. At the next step,
to protect Ni NPs against oxidation, the transmetalation process was performed via the
reduction of silver ions (0.04 M) on the surface of obtained Ni NPs, which results in the
fabrication of the core–shell structure. According to DLS measurement, the average size (as
the value of three subsequent runs of the instrument) of obtained Ni@Ag NPs was found
to be 220 nm (Figure 2A). In Figure 2B, the UV-visible spectra of the Ni and Ni@Ag NPs
are presented. As can be noticed, the spectrum of Ni@Ag core–shell NPs (dotted line) is
characterized by a distinct peak at about 420 nm, typical of the surface plasmons of silver
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with nano size (in various forms, such as plates, spheres, islands, rings, etc.) [33], while
bare Ni NPs have no peaks in the spectrum, which suggest the formation of core–shell
structure. In the SEM image (Figure 2C), almost spherical Ni@Ag NPs can be observed.
The EDX analysis (Figure 2D) confirmed presence of both nickel and silver. More details
about the characterization of such NPs can be found in our recent works [27–29].
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To obtain uniform and homogenous ink coatings, based on Ni@Ag NPs on PEN sub-
strate, which is an important characteristic for obtaining high conductivity, their properties
were optimized via the addition of wetting agents at various concentrations. The mor-
phologies of deposited ink coatings, after the deposition and drying process (80 ◦C, 15 min),
were characterized using an optical microscope (Figure 3). As can be seen in Figure 3A,
the structure of the coating without a wetting agent did not show good quality, as it was
nonuniform, and some holes can be seen. The most uniform coatings were obtained after
addition to ink formulation BYK 348 at a concentration of 0.05%, as is presented in Figure 3B.
The structures of such coatings included a lack of holes and cracks, which are the main
requirements for film fabrication with high conductivity.

The coatings with optimal morphological properties formed from the ink containing
BYK 348 were sintered at various ranges of the wavelength of UV-Vis irradiation. After that
step, using the four-probe electrode method, the measurement of the sheet resistance values
of the obtained metallic coatings was performed. The obtained values were multiplied by
the thicknesses (analyzed using the EDXRF method), which were similar (about 2 µm) for
all coated films, and the values of resistivity were calculated. Finally, the conductivities, as
the reciprocal values of resistivity, were calculated.

Figure 4A shows the dependence of the resistivity for metallic coatings formed from
inks based on Ni@Ag NPs and BYK 348 after the UV-Vis sintering process (after 90 min)
in the wavelength range extending from 300 to 700 nm. As can be seen, the values of
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lowest resistivity (24–25 µΩ·cm) could be obtained for the metallic coatings sintered at
the wavelength range 350–400 nm, which corresponds to the surface plasmon resonance
(SPR) of silver nanostructures. The excitation of plasmon resonances that generate the
localization and enhancement of the electric field at the interface between NPs has been
identified as an important effect in the systems [34–36]. Electrons emitted from the surface
at these enhanced areas give rise to two primary effects: the first effect is to initiate the
decomposition of organic stabilizer and the conversion of this material into α-C:H and α-C,
while the second effect is to produce a softening of the lattice at the NPs’ surfaces [34]. It
is reasonable to expect that all the α-C:H bridges can be replaced by welded necks if the
irradiation time is sufficiently long. Therefore, the optimization of the sintering time was
performed at a wavelength of 400 nm; the results are presented in Figure 4B.
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Figure 4. The dependence of the resistivity of coatings formed from Ni@Ag ink after the UV-Vis
sintering process (A) at a time of 90 min in the wavelength range 300–700 nm and (B) at a wavelength
of 400 nm at various sintering times.

The values of resistivity decrease from 65 to 22 µΩ·cm upon increasing the UV-Vis
sintering time from 15 to 240 min. The optimal value of resistivity, i.e., ~24 µΩ·cm, was
obtained after 90 min of irradiation, suggesting that further increasing the time does not
show significant changes in resistivity. The calculated conductivity of such optimized
film corresponds to 29–31% of that of a bulk nickel (about 7% of that or bulk silver). In
the published literature, the research into the fabrication processes of conductive coatings
based on Ni@Ag NPs using the UV-Vis sintering process has not so far been presented.
However, the most similar ones based on Ni NPs were prepared by Park et al. [26]. Via
the optimization of the flash-light sintering parameters, such as light energy and pulsed
light patterns, they obtained films with resistivity values of 76.34 µΩ·cm, which were
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higher than those of the coatings formed in the presented paper (~24 µΩ·cm). The higher
conductivity of the coatings obtained in our work could be the result of the presence of
the silver shell. The photonic curing of a screen-printed Ni flake ink on solid bleached
sulphate paperboard (SBS) and polyethylene terephthalate polymer (PET) substrates was
applied for the sensor application [37]. Minimum sheet resistances of 4 Ω/sq on SBS and
16 Ω/sq on PET were obtained. The Ni-based flexible transparent conductive panels with
sheet resistances of 53 Ω/sq on various substrates through the LRS of solution-processed
NiOx thin films using a laser digital patterning process were obtained by Nam et al. [38].
However, it is difficult to compare such values [37,38] to the resistivity of metallic coatings
formed in the presented research because the thicknesses of the obtained films were
not measured.

The conductivity of coatings based on Ni@Ag NPs after UV-Vis sintering (at optimal
conditions of a time of 90 min and a wavelength of about 400 nm), obtained in the current
study, was lower (~30% of that for bulk nickel) in comparison to the value achieved after
the thermal sintering process (48% of bulk nickel), which was presented in our previous
work [28]. A slightly lower resistivity (35% conductivity of bulk nickel) was also achieved
in our recent study of coatings composed of Ni@Ag NPs doped with 1% of Ag NPs but at a
sintering temperature of 150 ◦C [27]. However, the applied temperature in the mentioned
works [27,28] was limiting for heat-sensitive substrates. Moreover, using the sintering
process without heating is more profitable from an economic point of view. In the current
research, the conductivity of sintered coatings was higher than that after using oxalic acid
as a chemical agent (23% conductivity of bulk nickel) [29]. Therefore, the UV-Vis sintering
method could be more promising with regard to the application of obtained conductive
materials in the fabrication of flexible circuits and devices.

To define the possible mechanism of the UV-Vis sintering process for coatings based
on Ni@Ag NPs, the FTIR measurement before and after the irradiation of formed coatings
was performed. Moreover, to better understand the system influence of UV-Vis irradiation,
the polymeric film formed with pure CMC was investigated

The IR spectra of CMC (0.5%, concentration used in synthesis of Ni NPs) films before
and after heating at 80 ◦C (15 min) and irradiation via UV (90 min) are shown in Figure 5,
in which the differences in intensity of both spectra are visible. The strong and broad
absorption band characteristics of CMC can be observed in the vibration bands at around
3412 cm−1 and 2923 cm−1, which are assigned to the stretching vibrations of the –OH and
C-H groups, respectively. The peak at 1604 cm−1 confirms the presence of carboxyl groups
(COO–), and the bands at around 1419 cm−1 and 1325 cm−1 are assigned to CH2 scissoring
and –OH bending vibration, respectively. The stretching vibration band at 1064 cm−1

comes from –CH-O-CH2 group [39,40]. For CMC treated with temperature and UV light,
the intensity of infrared spectra decreased, and a shift in the maximum band vibration
of the hydroxyl group from 3412 cm−1 to 3393 cm−1 was observed. Also, the stretching
vibration of C-H from 2923 cm−1 for pure CMC shifts to 2915 cm−1 for CMC heated and
irradiated via UV irradiation was observed. According to Wang et al. [39], this phenomenon
can occur due to the decrease in the crystallinity index of CMC caused by the breaking of
some hydrogen bonds in the crystalline parts of CMC chains. Thus, the sintering process of
coatings based on Ni@Ag NPs can be attributed to their destabilization due to the lowering
of the crystallinity index of CMC.

In Figure 6, the FTIR spectra of CMC and Ni@Ag NPs coatings after drying at room
temperature and film based on Ni@Ag NPs after drying at 80 ◦C (15 min) and UV-Vis
sintering (90 min) are compared. As can be seen, the FTIR spectra of coatings, before and
after UV-Vis irradiation, formed from Ni@Ag NPs stabilized with CMC (Ni@Ag-CMC)
show big decreases in absorption band intensity in the whole measured range in comparison
to that obtained for pure CMC film dried at room temperature. The shift and band intensity
changes in the range of 3300–3500 cm−1 indicate the possible means of inorganic–organic
material connection (Ni@Ag-CMC) [39], which can explain the stabilization of nanoparticles
by CMC. The intensity of the characteristic absorption bands for CMC at 1604 cm−1 and
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1419 cm−1, assigned to the asymmetric and symmetric stretching vibrations of carboxyl
groups (COO–), decreased to 1587 cm−1 and 1416 cm−1, respectively, for Ni@Ag NP-based
coatings. It can be considered to be a characteristic of carboxylic acids adsorbed on NPs [41].
Moreover, for the spectrum of Ni@Ag-CMC treated with UV light, the peak intensity of
the band near 1262 cm−1 and 1064 cm−1 can hardly be observed compared to that of CMC
owing to ether bond cleavage after the introduction of CMC to the NP structure. Thus,
more highly anionic CMC can interact more strongly with free Ag ions (if they exist in
Ni@Ag NP-based coatings) through not only negatively charged COO2 groups but also
ionized OH2 groups. The large number of these anions in CMC can facilitate the reduction
of Ag ions to Ag NPs when exposed to UV light and improve the UV-Vis sintering process
of coatings based on Ni@Ag NPs [42].
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The changes in the intensity of absorption bands for the coatings composed of Ni@Ag
NPs before and after irradiation with UV light are less visible. For both types of analysis
(before and after the UV-Vis sintering process), the intensity of the main hydroxyl group at
3393 cm−1 almost vanished, and its shift to 3443 cm−1 can be seen. This can be attributed to
the decreasing crystallinity of CMC [39]. However, even if there are almost no differences
in the absorption bands in the measurement range of 3000–2000 cm−1 in the spectra of
coatings based on nanoparticles before and after UV-Vis sintering, those obtained at room
temperature were not conductive. It is also worth mentioning that all FTIR measurements
were performed for coatings; therefore, the analysis and interpretation of the results are
more complicated than for the solutions. Therefore, it is difficult to clearly indicate the
mechanism of the UV-Vis sintering process of films composed of Ni@Ag NPs.

Another suggested mechanism for the sintering of Ni@Ag NP-based coatings is
based on Prajapat et al. [43] work, and these authors noticed that during UV irradiation,
generated hydroxyl radicals attack the long polymer chains of CMC and result in viscos-
ity reduction. UV irradiation can also help to initiate the breakage of the backbone chain
of the polymer, which results in the lowering of the molecular weight of the polymer
and its depolymerization without big changes in FTIR spectra after this process. This
phenomenon can also lead to the destabilization of Ni@Ag NPs in sintered coatings and,
thus, be responsible for their conductivity.
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The morphology and topography of metallic coatings obtained after the drying process
(80 ◦C, 15 min), as well as after UV-Vis irradiation treatment at optimal conditions (time of
90 min and wavelength of 400 nm), were analyzed via the SEM technique. As can be seen
in Figure 7, the NPs after the UV-Vis sintering were much more tightly connected or even
welded compared to a coating that was only dried, resulting in an interconnected network.
The mechanism of this sintering has not been reported in the literature and needs further
study. However, it is clear from the above observations that UV-Vis irradiation may be a
useful technique for transforming a non-conductive coating based on metallic NPs into a
conductive coating. More information concerning the coalescence between NPs, e.g., how
the neck layers form, can be found in the literature [34].
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4. Conclusions

The results presented in this paper suggest that UV-Vis irradiation is an effective
method of sintering Ni@Ag NPs, being suitable for obtaining conductive metallic coat-
ings from NP-based inks. The calculated conductivity of such coatings corresponds to
29–30% of that of a bulk nickel. To the best of our knowledge, this is the first time that
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coatings composed of Ni@Ag NPs have been sintered via UV-Vis irradiation and such low
resistivity/high conductivity has been obtained. In contrast to thermal sintering, UV-Vis
irradiation is a promising method for the preparation of electronic tracks on heat-sensitive
substrates, like papers and plastics; however, more detailed studies of its mechanism are
still required.
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