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Abstract: The central ion Mg2+ is responsible for the differences between chlorophyll a and its free
base in their reactivity toward metal ions and thus their resistance to oxidation. We present here
the results of spectroscopic (electronic absorption and emission, circular dichroism, and electron
paramagnetic resonance), spectroelectrochemical, and computational (based on density functional
theory) investigations into the mechanism of pheophytin, a degradation that occurs in the presence
of Cu ions and O2. The processes leading to the formation of the linear form of tetrapyrrole are very
complex and involve the weakening of the methine bridge due to an electron withdrawal by Cu(II)
and the activation of O2, which provides protection to the free ends of the opening macrocycle. These
mechanistic insights are related to the naturally occurring damage to the photosynthetic apparatus of
plants growing on metal-contaminated soils.

Keywords: pheophytin a; copper(II); reactive oxygen species; linear tetrapyrrole formation

1. Introduction

The electronic and coordinative properties of chlorophylls (Chls) and bacteriochloro-
phylls (BChls) are strongly influenced by the character of species bound in their central
cavity, which, in most cases, is occupied by the Mg2+ ion [1–3]. Due to the special non-
coordinative type of binding, it plays a key role in taming the intramolecular intersystem
crossing in Chls [4,5]. Importantly, the removal of the central metal ion affects the redox
properties of Chls and thus its free base, pheophytin a (Pheoa), functions exclusively as the
primary electron acceptor in the photosystem II reaction center. On the other hand, the
replacement of the central Mg2+, e.g., in chlorophyll a (Chla), with other divalent metal
ions impairs the photochemical properties of the pigment and most often leads to the inhi-
bition of photosynthesis. Such a spontaneous substitution is observed in plants growing
in soils contaminated with Cu, Cd, or Hg compounds, and causes irreversible disruption
to the electron transport chain within the thylakoid membranes [6–8]. Therefore, sophis-
ticated protective mechanisms of natural photosystems, supported by some endogenous
ligands, shield pigments from the redox activity of metallic impurities taken up from the
environment [9]. On the other hand, the metallo-derivatives of chlorophylls and bacteri-
ochlorophylls are desirable for their potential biomedical [10–12] or photocatalytic [13–15]
applications.

We have shown that the routes of Chla reactions with redox-active metal complexes
(Cu(II) in particular) strongly depend on the medium. Besides transmetalation, i.e., the
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substitution of the central Mg ion and the metalation of Pheoa, two fundamentally distinct
redox pathways can be followed [16]. The redox cycling is characteristic of Chla, which
is alternately oxidized to a cation radical and reduced back in a reaction involving mixed
Cu(I) and Cu(II) species. An important role in these reactions is played by reactive oxygen
species (ROS), namely superoxide and peroxide, whose generation and scavenging are
strictly correlated with the Chla redox cycling and Cu(II)/Cu(I) speciation equilibria [17].

In the case of Pheoa, similar redox cycling can only be observed under very specific
conditions as a reaction parallel to the dominant degradation of the pigment. In a previous
article we identified the boundary conditions for Pheoa degradation in the presence of
various Cu(II) complexes [16]. Our spectroscopic and electrochemical studies revealed that
the degradation of Pheoa in weakly coordinating organic solvents prevails in large excesses
of Cu(II) salts with weakly coordinating counterions in equilibrium with air. In this study
we focus on the mechanism of this complex process.

2. Results and Discussion

The effect of Cu(II). A series of spectroscopic and computational techniques was
applied in order to follow the course of the reaction of Pheoa with CuTf2, which constitutes
a convenient model system [16]. The time resolution of the stopped-flow spectrophotometer
(in a rapid-scan mode) allowed us to resolve three reaction steps. The first one (step 1) was
the quickest and, under set conditions ([CuTf2]/[Pheoa] = 2000, 25 ◦C), was completed
while the reactants were being mixed. The changes occurring during this step concern all
the absorption bands in the visible range. While the intensity of the Soret band increases
very significantly, the bands in the 450–500 range change their relative intensity, and the QY
band shifts hypsochromically by 12 nm (Figure 1a).

Step 2 of the reaction lasts about 1 s. During this time, one could observe a ~50%
reduction in the intensity and clear separation of the two components of the Soret band,
flattening of the weak central bands, and almost a complete loss of the QY band (Figure 1b).
The overall reaction is complete in another approx. 20 s. In the slowest step, step 3, the
Soret band decays to its residual form. As a result, the spectrum of the product consists
of two weak but very broad bands stretched over almost the entire visible range of the
spectrum (Figure 1c).

The multi-step reaction of Pheoa with CuTf2 is reflected in quite characteristic changes
in the absorption spectra, pointing to the differing nature of the changes occurring at each
step. The blue shift of the QY band to c. 652 nm observed in the initial, very fast step is
indicative of the formation of the copper analogue of Chla (Cu-Pheoa). However, the time
scale seems to be too short for the complete metalation of Pheoa. Formation of Cu-Pheoa is
also unlikely due to the presence of the bands in the 450–550 nm range that reflect symmetry,
which can be achieved either by the coordination of the metal ion out of the plane, or by
the protons remaining in the cavity of the macrocycle. Some similarities of these spectral
shifts to those reported for the allomerization of Chls may indicate its occurrence in our
system, as a reaction parallel to the degradation of the macrocyclic ring, pointing to the
presence of O2

•− [18,19].
The considerable simplification of the absorption spectrum, primarily in its central

part, observed only during step 2, results in the spectrum taking on features more typical
of porphyrin than of chlorin. A change like this requires the two-electron oxidation of the
macrocyclic ligand. The complete bleaching which occurs in step 3 is a clear indication of
the definitive breakdown of the macrocyclic system. An open-chain species of tetrapyr-
role, bilin, is the expected product, as suggested by earlier studies on the reactivity of
photosynthetic pigments toward oxidizing agents [20,21].

The mechanism, proposed by us, of Pheoa breakdown leading to a linear tetrapyrrolic
product is strongly supported by both the chirality and the shape of the circular dichro-
ism spectrum of the reaction mixture recorded shortly after the mixing of the reactants
(Figure 1c). The initial signals of the substrate (Pheoa) quickly disappear and the resulting
spectrum shows two maxima, near 290 and 320 nm, respectively, which is very characteristic
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of the NCC-type (“nonfluorescent chlorophyll catabolite”, open chain) breakdown product
of pheophorbide a [22]. We think that the chirality of the product and its characteristic CD
spectrum are clear evidence for the specific site of the macrocycle opening.
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Figure 1. Changes of the UV-Vis spectra accompanying the reaction between Pheoa and CuTf2

(1:2000) in MeCN. (a) 0–20 ms, inset: zoom at 490–550 nm; (b) 0–1 s; (c) 1–25 s, inset: the circular
dichroism (CD) spectrum of the reaction mixture recorded 30 s after the mixing of the reactants (the
arrow indicates corresponding CD and UV-Vis spectra). The colored lines represent the spectrum
recorded before (green), 25 ms (blue), 1 s (orange) and 25 s (red) after mixing the reagents. The kinetic
traces recorded at 410 nm for the reaction steps shown in (b,c) are presented in (d,e), respectively.

To identify the oxidation step of the pigment, an experiment was performed in which
a solution of Pheoa in MeCN was subjected to a voltage varying from 0 to +1.5 V in 0.5 V
intervals. The absorption spectra recorded after equilibrium was established in the solution
are shown in Figure 2.

With an initial increase in the voltage, a slight increase in the Soret band and a c. 40%
decrease in the QY band is observed. These changes, as well as the shift of the QY band
maximum toward shorter wavelengths, resemble those observed in step 1 of the reaction
with Cu(II) (compare light blue line in Figure 2 and blue line in Figure 1a). Further raising
the voltage to +1.0 and +1.5 V causes a gradual decrease in absorbance in all the pigment’s
bands. The shape of the last one (pink line) features only the remnants of the QY band,
which is clearly broadened and shifted toward shorter wavelengths. All these features
make this spectrum similar to that of the reaction product with CuTf2. However, the still
relatively intense and narrow Soret band points to step 2 as being the one in which the
electron transfer occurs. The less pronounced effects and inaccurate reproduction of the
shape of the Soret band in the spectroelectrochemical experiment are probably due to both
the low efficiency of the electrode reaction and the exclusion of changes resulting from
metal coordination.
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Some additional information on the mechanism of the reaction of Pheoa with CuTf2
was provided by the recorded emission spectra (Figure 3a). A nearly complete decay of the
fluorescence takes place, even during the mixing of the reagents (blue line). Surprisingly, in
the following somewhat slower step the emission is slightly restored with the preservation
of the initial band position (orange line). The non-fluorescent product is formed in the
final step of the reaction (red line). In a separate experiment, the spectra of the pigment
subjected to an increasing voltage were recorded (Figure 3b). Despite the significant
differences in the dynamics and magnitude of the ongoing changes, the trend is essentially
similar to that in the reaction with CuTf2. In both cases, an almost complete disappearance
of the fluorescence of the pigment is observed, although much slower in the electrode
reaction than in the presence of Cu(II) ions. Furthermore, the subsequent, very slight
increase in emission intensity makes the two systems similar. Despite these similarities,
the interpretation of the reaction with CuTf2 is not quite straightforward. The initial decay
of the emission may also result from the oxidation of Pheoa to its cation radical, or from
the quenching of the excited fluorophore within the outer-sphere complex. In turn, the
subsequent temporary increase in intensity may be due to the reduction of coordinated
Cu(II) to Cu(I). Nevertheless, the ultimate loss of emission ability is characteristic of the
formation of the linear forms of tetrapyrrole [23,24].

The effect of O2. The decomposition of the Pheoa macrocyclic system is due to the
action of an oxidant, which in the system under investigation can be either the Cu(II)
complex or some reactive oxygen species. To clarify this doubt, the effect of O2 on the
reaction of Pheoa with CuTf2 in MeCN was tested. No changes were found during the
long-term spectroscopic observations of the pigment in solutions with different O2 contents.
Reactions with CuTf2 were carried out successively in equilibrium with air, as well as in
deoxygenated and O2-saturated solutions. In the presence of dissolved O2, regardless of its
concentration, the observed spectral changes have the same pattern (cf. Figures 1c and 4a).
The observed rate constant for the slower step of the reaction in the O2-saturated solution
(kobs(O2) = (6.11 ± 0.05) × 10−2 s−1) is only slightly higher than for the reaction in equilib-
rium with air (kobs(air) = (5.99 ± 0.03) × 10−2 s−1). Changes found in the deoxygenated
solution are of a slightly different nature (Figure 4b). The initial decay of all absorption
bands is similar but noticeably faster than in the other systems (kobs(Ar) = (9.99 ± 0.16) ×
10−2 s−1). This is followed by a much slower recovery of the band in the range typical of
Soret (388 nm).
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Figure 3. Changes in fluorescence emission of Pheoa: (a) accompanying the reaction with excess
CuTf2 in MeCN and (b) induced electrochemically by subjecting the solution gradually (in +0.5 V
increments) up to a voltage of +1.5 V. Colored lines refer to the spectra recorded: before (green),
during (blue and orange, successively) and after the experiment (red). Arrows indicate changes in
band intensity (sequentially from left to right).
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Figure 4. Changes in the UV-Vis spectra of Pheoa accompanying the reaction with CuTf2 in (a) O2-
saturated and (b) deoxygenated MeCN solution. Insets: kinetic traces at 392 nm. T = 298 K. Colored
lines refer to green—before mixing, blue—right after mixing, and red—last recorded spectrum.

The rapid and almost complete bleaching observed in the first step indicates that the
oxidative degradation of the macrocyclic ligand occurs via the reaction with the Cu(II)
complex, and does not require the participation of O2. Restoration of the absorption
band at 388 nm, typical of porphyrinoids, suggests that the macrocyclic system can be
reconstituted from the linear species of tetrapyrrole. This is only possible if the terminal
carbon atoms remain unrestricted. The well-known products of Chla degradation that
appear in its metabolic pathway, namely bilins, have two carbonyl groups formed by the
attachment of two oxygen atoms [25]. In turn, anaerobic conditions ensure the possibility
of the recombination of the radicals on the carbon atoms generated via homolytic bond
cleavage. In addition, restoration of this bond can be sterically facilitated in the presence of
a metal ion preferring planar or octahedral coordination, such as Cu(II).

Additional information on the role of O2 was gained from a brief study of its effect on
Cu(II) speciation. The absorption spectra of CuTf2 were recorded sequentially in MeCN
solution equilibrated with air, deoxygenated, saturated with O2, deoxygenated again, and
left to re-establish equilibrium with air (Figure 5). While the change in O2 concentration has
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virtually no effect on the electronic transitions located on metal orbitals (>600 nm), some
effect becomes apparent in the range of CT bands. The removal of O2 from the solution is
accompanied by the disappearance of a low-intensity band at 280 nm, which is restored
when the system reaches equilibrium with the air again (Figure 5).
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Figure 5. The effect of oxygen on the UV-Vis spectrum of CuTf2 in MeCN. The solution in equilibrium
with air (blue solid line) was successively deoxygenated (green line), saturated with O2 (red line),
and allowed to equilibrate with air again (blue dashed line).

The dependence of the appearance of this band on dioxygen concentration points
to the interaction of the O2 with the metal ion. Consequently, a certain fraction of Cu(I)
is expected to be present in the system, which is somehow confirmed by a relatively
weakly intense band of d–d transitions. This is quite usual in solutions favoring Cu cluster
formation [26,27]. Although this system is not particularly efficient in this regard, a small
amount of Cu(I) can coexist and be sufficient to activate O2,

CuI + O2 → CuII(O−
2
)

(1)

which, in this way, becomes capable of blocking the intersection sites of the macrocycle.
The smaller contribution of CuII(O2

−) in the O2-saturated solution than in equilibrium with
air is probably mainly due to the almost complete conversion of Cu(I) to Cu(II). However,
it is reasonable to assume that superoxide formation is favored in the presence of Pheoa,
which increases the contribution of Cu(I) to the copper speciation equilibrium.

We attempted to check the possibility of the activation of O2 and identify its reac-
tive species in solution via EPR spectroscopy using DMPO as a spin trap. The recorded
spectrum ruled out the existence of any free ROS in the absence of Pheoa. However, a
few minutes after adding DMPO, a signal appeared with hyperfine structure parameters,
namely aiso(N) = 0.69 mT, and aiso1(H) = aiso2(H) = 0.37 mT [1], indicating the formation
of DMPOX (5,5-dimethyl-2-pyrrolidone-N-oxyl) (Figure 6), which is characteristic for the
system containing the metal-bound oxygen radical [28–30]. This argues for the presence of
CuII(O2

−) and, at the same time, for the occurrence of Cu(I) in the solution.
Theoretical approach to the interactions in the Pheoa/copper/superoxide system. The

DFT studies were performed to determine the effect of electron withdrawal on the stability
of the macrocyclic system. The comparison of the bond lengths of the methine bridges
in Pheoa (Table 1; see Figure 7 for the model used) and its two-electron oxidized form
(Pheoa2+) indicate that while some of them are elongated (by 0.033 Å on average), the rest
are somewhat shortened (by 0.016 Å on average), leading to the slight expansion of the
macrocycle (all changes result in a 0.083 Å longer circuit).
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Table 1. Selected bond lengths (in Å) of methine bridges in Pheoa and Pheoa2+. For atom notation see
Figure 2.

Bond Pheoa Pheoa2+

C10–C27 1.392 1.375
C27–C7 1.407 1.431
C9–C68 1.402 1.410
C68–C5 1.397 1.385
C4–C26 1.391 1.445
C2–C19 1.399 1.415
C19–C6 1.403 1.385
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We attempted to gain a closer look at the subsequent changes in the reaction system
The energy diagram of the reaction and the possible structures which can be formed during
the interaction between Pheoa, solvated copper ion, and dioxygen are presented in Figure 8.
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Figure 8. DFT:BP/def2-TZVP energy diagram for the proposed transformation of Pheoa into an
open-chain species. Proposed intermediate states (INT 1–4) are shown below.

At first, the dioxygen can be bound to the methine bridge, forming a cyclic peroxide
species (INT1, Figure 8) [31]. This leads to the methine C-C bond elongation from 1.392 Å
to 1.570 Å. At the same time, the O-O bond is stretched from 1.22 Å (being its length in
the isolated O2) to 1.511 Å. The C-C bridge can then be broken, together with the O-O
bond of the dioxygen, which is accompanied by the insertion of the Cu ion in between two
oxygen atoms, and its partial deligation (INT2, Figure 8). In the resulting intermediate, the
methine C-C bond length is equal to 1.597 Å, and the Cu-O bonds to 2.078 and 1.897 Å.
The C-O bonds are 1.373 Å and 1.397 Å long. Next, the methine bridge is broken and
the distance between the two carbon atoms increases to 3.781 Å (INT3, Figure 8). In the
transition state, the C-C bond length is equal to 1.714 Å, and the energy barrier for this
step is equal to 22.6 kcal/mol (Figure 8). The copper ion plays the role of a pin holding
together two oxygen atoms. The latter form bonds with the respective carbon atoms of
1.289 Å and 1.278 Å. Their length indicates that two carbonyl groups are formed. Finally,
1-formyl-19-oxobilane is formed (INT4, Figure 8). The macrocyclic ring is opened, and two
oxygen atoms form two carbonyl groups of typical lengths (1.221 Å and 1.225 Å). Overall,
this process is accompanied by a decrease in the total energy, showing that the resulting
1-formyl-19-oxobilane is more stable than Pheoa.

The mechanism of Pheoa breakdown. To gain more insight into the mechanism of
the reaction of Pheoa with CuTf2 in MeCN, we performed kinetic investigations in air-
equilibrated solution. Only two of the three recognized reaction steps were accessible, due
to their time scale. Step 1 (Figure 1a) was completed while the reagents were being mixed
in stopped-flow experiments. Thus, it proved to be too fast even for this technique.

The spectroscopically recognized step 2 (cf. Figure 1b) is completed within a few sec-
onds. The recorded time traces were satisfactorily fitted with mono-exponential functions.
A large excess of CuTf2 over Pheoa was used to ensure pseudo-first-order conditions. The
dependences of kobs on CuTf2 concentration at 298–313 K are shown in Figure 9a.
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Figure 9. (a) The kobs dependences on CuTf2 concentration for step 2 of the reaction with Pheoa
(2.5 µM) in MeCN. The Eyring plots in (b,c) were constructed using k1 and k2 values, respectively.
Kinetic data were determined in equilibrium with air at ambient pressure.

The linear course of concentration dependence with a clear intercept indicates that
this reaction step follows the rate law:

kobs = k1[Cu(II)] + k2 (2)

where k1 is the second-order rate constant for complex formation. The value of k2 is
usually attributed to the back reaction, although, in this case, such an interpretation is not
completely straightforward. The coexistence of CuII(O2

−) species with the predominant
solvato complex of Cu(II) gives rise to the implementation of the competitive reaction
pathways leading to the formation of the product (Cu-Pheoa), one of which (represented
by k1) is dependent on, and the other (represented by k2) independent of, the metal
concentration. The activation parameters were obtained according to the Eyring equation.
The temperature dependences for the k1 and k2 values are shown in Figure 9b,c, respectively,
whereas Table 2 presents the determined kinetic parameters. The small positive values of the
activation entropy (∆S‡) indicate a dissociative-interchange mechanism of both reactions.
In addition, there is not much difference between the values of activation enthalpy for the
[Cu(II)]-dependent and [Cu(II)]-independent reaction.

Table 2. Kinetic parameters for the second step of the reaction of Pheoa with CuTf2 in MeCN in
equilibrium with air.

Parameter k1 k2

k298K (1.536 ± 0.318) × 103 M−1s−1 5.309 ± 1.049 s−1

∆H‡ (kJmol−1) 58 ± 4 71 ± 2
∆S‡ (Jmol−1K−1) +10 ± 12 +7 ± 6

Kinetic studies of the subsequent step 3 were carried out following the decay of
the Soret band. Kinetic traces of a bi-exponential nature were recorded, although no
dependence of the rate of this step on Cu(II) concentration was found.

The pattern of spectroscopic changes along with the time scales of the respective steps
allowed us to propose the following sequence of reactions.

The spectroscopic features observed in step 1 prompt us to assign them to Pheoa
allomerization, which is presumably accompanied by the formation of an outer-sphere
complex, within which charge relocation can occur:

Pheoa + Cu2+ ⇄
{

Pheoa · · · Cu2+
}

(3){
Pheoa · · · Cu2+

}
⇄

{
Pheoa•+ · · · Cu+

}
(4)
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In the spectroscopically recognized step 2 (cf. Figure 1b), the reduced Cu center binds
O2, while the outer-sphere adduct presumably transforms into an actual complex:{

Pheoa•+ · · · Cu+
}
+ O2 → [Pheoa − CuO2]

2+ (5)

The final step, step 3, must consist of all the complex electronic and structural transfor-
mations that lead to the final breakdown of the macrocyclic system. Since its rate does not
depend on Cu(II) concentration (and also, essentially, on [O2]), all transformations must
occur within the already formed Pheoa-Cu(O2) complex.

[Pheoa − CuO2]
2+ → [Pheoa − CuO2]

2+′
(6)

Although our experimental results did not provide the exact specification of the
intermediate species (represented by [Pheoa-CuO2]2+′) formed at this step of the reaction,
particular clues were provided by the computational methods used. According to them,
a species can appear in which the breaking C-C bond is “pinned” by the O-Cu-O system
(compare Figure 9c). The terminal carbonyl groups thus formed eventually stabilize the
product and the metal ion can be released.

[Pheoa − CuO2]
2+′

→ Pheoa(O)2 + Cu2+ (7)

In our earlier studies [16], we determined the boundary concentration ratios of Cu(II)
complexes and Pheoa at which pigment degradation occurs, regardless of the presence of
O2. In light of the current findings, it seems reasonable to expect that limited O2 access may
allow the reconstitution of some form of macrocyclic system aided by coordination around
the copper ion. This hypothesis requires further investigation.

3. Materials and Methods

Pheophytin a. The cyanobacterium Arthrospira maxima originating from the Culture
Collection of Autotrophic Organisms in Trebon (Czech Republic) was used as a source of
photosynthetic pigments employed in our studies. Chla was extracted using Iriyama’s
method [32] and subjected to two-stage purification. Column chromatography on DEAE
sepharose (Sigma, Darmstadt, Germany) was employed in the first step [33]. In the second
step, isocratic reversed-phase high-performance liquid chromatography with MeOH as
the eluent was used. The HPLC setup (Varian, Palo Alto, CA, USA) was equipped with a
ProStar 230 pump, an RP-C18 column (250 mm × 10 mm and a flow rate of 4 mL/min),
and a TIDAS diode array detector (J&M, Frankfurt am Main, Germany) for the online
monitoring of the absorption spectra. Pheophytin a was prepared using Chla with a
small amount of doubly distilled glacial acetic acid at room temperature for a short time,
according to the procedure previously described [34]. The acid was removed in a stream
of nitrogen. The product was dried under a vacuum and quickly purified using column
chromatography on DEAE-Sepharose in acetone. The purity of Pheoa was confirmed using
reversed-phase HPLC. The pigment was stored under argon at –20 ◦C. All experiments
were performed in dimmed light with freshly prepared solutions.

Solvents and Reagents. Copper(II) trifluoromethanesulfonate (CuTf2) and acetonitrile
(MeCN), both of analytical grade, were purchased from Sigma-Aldrich (Merck, Darmstadt,
Germany). The gases Ar and O2 (5.0 grade) were obtained from Air Liquid.

Spectroscopic and Kinetic Measurements. A Lambda 35 and Lambda 950 (Perkin
Elmer, Waltham, MA, USA) spectrophotometer, both equipped with a Peltier temperature
controller PTP-6, were used both in the preparation of Pheoa solutions of a certain concen-
tration and in testing the effect of O2 on Cu(II) speciation. Depending on the requirements,
the experiment was carried out in a 1 cm quartz cuvette or in a screwed quartz cuvette with
a silicone rubber septum (for anaerobic conditions).

The progress of the reaction was followed using an SX20 (Applied Photophysics,
Surrey, UK) stopped-flow spectrophotometer equipped with a photodiode array detector.



Int. J. Mol. Sci. 2024, 25, 1831 11 of 14

The rapid-scan technique was applied to record spectral changes in the UV-Vis range. To
determine the reaction rates, single wavelength kinetic traces at 652 nm (step II) and 410 nm
(step III) were collected. The temperature was controlled using a Labo Plus (Polyscience,
Warrington, PA, USA) thermostatic bath. The oxygen-saturated and deoxygenated systems
were obtained by purging the reagent solutions with O2 and A, respectively. The reac-
tions were monitored using the rapid-scan technique. All data obtained in stopped-flow
experiments were processed using the software Pro-Data SX v. 2.2.27.

The emission spectra were recorded on a Fluorolog 3 (Horiba—Jobin Yvon, Edison,
NJ, USA) spectrofluorometer in 1 cm quartz cuvettes. The samples were excited at 410 nm.
The spectra were recorded in the 600–800 nm range at equal time intervals and processed
using the software OriginPro 2020 (Academic).

The spectroelectrochemical experiments were performed using an SP150 (BioLogic,
Seyssinet-Pariset, France) potentiostat combined with a Lambda 265 (Perkin Elmer) spec-
trophotometer and Fluorolog-3, to track the effect of the potentials applied on the absorption
and emission changes, respectively. A platinum grid was used as a working electrode, an
Ag/AgCl cell as a reference electrode, and a thin platinum rod as an auxiliary electrode.
The spectrum of c. 10 µM Pheoa in the presence of 0.1 M lithium perchlorate (used as a
supporting electrolyte) was recorded and then the potential of +0.5 V was applied and
maintained for 5 min., during which the spectra were collected at equal time intervals. This
procedure was repeated successively with the potential increasing by 0.5 V up to +1.5 V.

The EPR experiment was performed on a Miniscope MS 400 (Magnettech, Berlin,
Germany) spectrometer with DMPO as the spin-trapping agent (solution concentration
40 mg/mL). The instrumental parameters were as follows: X-band microwave frequency
~9.43 GHz; sweep time 120 ms; time constant 0.1 ms; modulation amplitude 0.05 mT;
and microwave power 5 mW. Computer simulation of the experimental spectrum was
performed with the software EPRsim32 [35].

The circular dichroism spectra were recorded on a J-815 spectropolarimeter (JASCO,
Tokyo, Japan) in a 1 cm pathlength quartz cell, under ambient conditions, at a scan rate of
200 nm/min with an increment of 2 nm.

DFT. The computational studies were carried out using density functional theory
(DFT), as implemented in Turbomole v7.0 [36]. The gradient-corrected Burke–Perdew
(B–P) functional [37–39] was applied, with a def2-TZVP basis set [40] for all atoms. The
resolution of identity (RI) algorithm [41,42] was applied for computing the electronic
Coulomb interactions. The computations involved geometry optimization of the structures,
further confirmed via vibrational analysis to ascertain whether the resulting structures
were the minima on the potential energy surface. In each case, two multiplicities were
considered. The electronic properties of the systems were studied with the aid of natural
population analysis (NPA) [43].

4. Conclusions

The mechanisms of the reactions between Chls and transition metal ions have attracted
interest because of both the applicability of porphyrinoid metallo-complexes [44,45] and
their relevance to the damage of photosynthetic apparatus that occurs in nature [24,46]. Our
model studies provide the basis for a better understanding of the role of the intracellular
environment, such as functional side groups of amino acids in the Chl-binding proteins,
in controlling the reactivity of the metal ions toward photosynthetic pigments, as well
as in the design of novel functional bio-mimetic systems. The present results confirm
the cooperativity of the O2 and Cu(II) ions in the oxidative breakdown of Pheoa. Three
reaction steps distinguished in the spectroscopic studies indicate a stepwise oxidation of
the macrocycle, in which Cu(II) presumably plays the role of the primary electron acceptor.
Its reduction to Cu(I) allows the binding and transformation of O2 to a superoxide species,
which, remaining in proximity to the macrocycle due to the binding to the central Cu ion,
undergoes cleavage, along with the macrocycle cleavage at a specific methine bridge. Thus,
a stable open-chain NCC-like product is formed, as evidenced by its circular dichroism
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features. In addition to the complex formation [9,47] and the redox cycling characteristic of
Chla [17], the mechanism revealed here represents another pathway of reactions between
Chls and transition metal ions, an alternative to those traditionally considered. This may
also partly account for the role of heavy metallic pollutants in damaging the photosynthetic
apparatus in plants. On the other hand, the propensity of the Chl-free base to undergo such
a reaction is yet another argument in the discussion of the role of the central Mg ion in Chls.
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16. Orzeł, Ł.; Szmyd, B.; Rutkowska-Żbik, D.; Fiedor, L.; van Eldik, R.; Stochel, G. Fine tuning of copper(II)–chlorophyll interactions
in organic media. Metalation versus oxidation of the macrocycle. Dalton Trans. 2015, 44, 6012–6022. [CrossRef]

17. Orzeł, Ł.; Rutkowska-Zbik, D.; van Eldik, R.; Fiedor, L.; Stochel, G. Chlorophyll a π-cation radical as redox mediator in superoxide
dismutase (SOD) mimetics. ChemPhysChem 2021, 22, 344–348. [CrossRef]

18. Hynninen, P.H.; Hyvarinen, K. Tracing the Allomerization Pathways of Chlorophylls by 18O-Labeling and Mass Spectrometry. J.
Org. Chem. 2002, 67, 4055–4061. [CrossRef] [PubMed]

19. Hynninen, P.H.; Leppakases, T.S.; Mesilaakso, M. The enolate anions of chlorophylls a and b as ambident nucleophiles in
oxidations with (−)- or (+)-(10-camphorsulfonyl)oxaziridine. Synthesis of 132(S/R)-hydroxychlorophylls a and b. Tetrahedron
2006, 62, 3412–3422. [CrossRef]

20. Ulrich, M.; Moser, S.; Mueller, T.; Kräutler, B. How the colourless nonfluorescent chlorophyll catabolites rust. Chem. Eur. J. 2011,
17, 2330–2334. [CrossRef]

21. Kräutler, B. Phyllobilins—The abundant bilin-type tetrapyrrolic catabolites of the green plant pigment chlorophyll. Chem. Soc.
Rev. 2014, 43, 6227. [CrossRef]

22. Oberhuber, M.; Berghold, J.; Breuker, K.; Hörtensteiner, S.; Kräutler, B. Breakdown of chlorophyll: A nonenzymatic reaction
accounts for the formation of the colorless, “nonfluorescent” chlorophyll catabolites. Proc. Natl. Acad. Sci. USA 2003, 10,
6910–6915. [CrossRef] [PubMed]

23. Kräutler, B. Unravelling chlorophyll catabolism in higher plants. Biochem. Soc. Trans. 2002, 30, 625–630. [CrossRef] [PubMed]
24. Kräutler, B. Chlorophyll Breakdown—How Chemistry Has Helped to Decipher a Striking Biological Enigma. Synlett 2019, 30,

263–274. [CrossRef]
25. Frankenberg-Dinkel, N.; Terry, M.J. Synthesis and Role of Bilins in Photosynthetic Organisms. In Tetrapyrroles: Birth, Life and

Death; Warren, M.J., Smith, A.G., Eds.; Springer: New York, NY, USA, 2009; pp. 208–220.
26. Becker, S.; Dürr, M.; Miska, A.; Becker, J.; Gawlig, C.; Behrens, U.; Ivanović-Burmazović, I.; Schindler, S. Copper Chloride
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