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natalia.zuk@umlub.pl

2 Department of Chemical Technology, Faculty of Chemistry, Maria Curie Skłodowska University,
Pl. Maria Curie-Skłodowskiej 3, 20-031 Lublin, Poland; sylwia.pasieczna-patkowska@mail.umcs.pl

3 Analytical Laboratory, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie12 Skłodowska
University, Pl. Marii Curie-Skłodowskiej 3, 20-031 Lublin, Poland; marcin.kusmierz@mail.umcs.pl

4 Department of Geotechnics, Civil Engineering and Architecture Faculty, Lublin University of Technology,
Nadbystrzycka 40, 20-618 Lublin, Poland; r.panek@pollub.pl (R.P.); w.franus@pollub.pl (W.F.)

5 Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland;
jacek.baj@umlub.pl (J.B.); grzegorz.buszewicz@umlub.pl (G.B.); grzegorz.teresinski@umlub.pl (G.T.)

6 Department of Biopharmacy, Medical University of Lublin, 4a Chodźki Str., 20-093 Lublin, Poland;
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Abstract: In recent years, there has been a growing interest in plant pigments as readily available
nutraceuticals. Photosynthetic pigments, specifically chlorophylls and carotenoids, renowned for their
non-toxic antioxidant properties, are increasingly finding applications beyond their health-promoting
attributes. Consequently, there is an ongoing need for cost-effective methods of isolation. This study
employs a co-precipitation method to synthesize magnetic iron oxide nanoparticles. Scanning electron
microscopy (SEM) coupled with energy dispersive spectrometry (EDS) confirms that an aqueous
environment and oxidizing conditions yield nanosized iron oxide with particle sizes ranging from 80
to 140 nm. X-ray photoelectron spectroscopy (XPS) spectra indicate the presence of hydrous iron oxide
FeO(OH) on the surface of the nanosized iron oxide. The Brunauer–Emmett–Teller (BET) surface
area of obtained nanomaterial was 151.4 m2 g−1, with total pore volumes of pores 0.25 cm3 g−1 STP.
The material, designated as iron oxide nanoparticles (IONPs), serves as an adsorbent for magnetic
solid phase extraction (MSPE) and isolation of photosynthetic pigments (chlorophyll a, lutein) from
extracts of higher green plants (Mentha piperita L., Urtica dioica L.). Sorption of chlorophyll a onto
the nanoparticles is confirmed using UV–vis spectroscopy, Fourier transform infrared photoacoustic
spectroscopy (FT-IR/PAS), and high-performance liquid chromatography (HPLC). Selective sorption
of chlorophyll a requires a minimum of 3 g of IONPs per 12 mg of chlorophyll a, with acetone as the
solvent, and is dependent on a storage time of 48 h. Extended contact time of IONPs with the acetone
extract, i.e., 72 h, ensures the elimination of remaining components except lutein, with a spectral
purity of 98%, recovered with over 90% efficiency. The mechanism of chlorophyll removal using
IONPs relies on the interaction of the pigment’s carbonyl (C=O) groups with the adsorbent surface
hydroxyl (–OH) groups. Based on molecular dynamics (MD) simulations, it has been proven that the
selective adsorption of pigments is also influenced by more favorable dispersion interactions between
acetone and chlorophyll in comparison with other solutes. An aqueous environment significantly
promotes the removal of pigments; however, it results in a complete loss of selectivity.

Keywords: chlorophyll a; iron oxide nanoparticles; lutein; magnetic solid phase extraction; photosyn-
thetic pigments
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1. Introduction

Commonly available and inexpensive green plants have gained considerable attention
in the food, pharmaceutical, and cosmetic industries due to their nutritional value and asso-
ciated health benefits. Extracts of these plants contain significant amounts of photosynthetic
pigments, particularly chlorophylls and carotenoids. These pigments are known for their
antioxidant, anti-mutagenic, anti-viral, anti-inflammatory, and anti-cancer effects [1–3].
In addition, plants have been explored as potential sources of chlorophylls and other
photosynthetic pigments for the conversion of solar energy into electricity, particularly in
third-generation photovoltaic cells known as dye-sensitized solar cells [4].

Chlorophylls, considered nutraceuticals, have been linked to potential benefits such
as blood sugar lowering, detoxification, improved digestion, and reduced allergen lev-
els. In the cosmetic and food industries, chlorophylls are used as green pigments and
odor-absorbing additives, as seen in E140 chlorophyll and E141 chlorophyllin, the sodium–
copper salt of chlorophyll [4]. Carotenoids, a diverse group of over 1000 plant pigments
including β-carotene, lutein, and zeaxanthin, are known for their beneficial effects in pre-
venting eye diseases such as cataracts, age-related macular degeneration (AMD), and retinal
degeneration [5–7]. Recently, attention has focused on the protective role of carotenoids
against ultraviolet A (UVA) radiation and skin damage [8–12]. Lutein is also registered as
nutraceutical in DrugBank (Accession Number DB00137). There are two pharmaceutical
products containing lutein in a form of capsules and powder for oral administration, and
a few mixture and unapproved products. Furthermore, lutein is registered as one of the
food additives.

Obtaining high-purity natural pigments is a costly endeavor and requires selective
and highly efficient isolation methods [13]. The use of solvent extraction by acetone or
water–ethanol causes strong coloration of green plant extracts. Many efforts have been
made to dechlorophyllize plant extracts or to isolate coexisting photosynthetic pigments in
high purity.

Plant extracts can be subjected to chromatographic analysis to isolate chlorophylls and
carotenoids [14–16]. In this case, there is a high risk of degradation of pigments, especially
chlorophyll. Classic extraction methods include liquid–liquid extraction (LLE), also known
as solvent extraction [17], and its version for ionic analytes, ion pair extraction (IPE) [18].
Despite satisfactory extraction efficiency, these methods do not meet the criteria of so-called
green chemistry due to the high consumption of toxic organic solvents [19].

Dispersive liquid–liquid microextraction (DLLME) solves this problem by using much
smaller amounts of organic solvent [20,21]. However, DLLME is mainly useful for the
purification of aqueous solutions from various trace contaminants. One of the more
environmentally friendly versions of DLLME is its use in deep eutectic solvent (DES)
extraction [22]. Another extraction method is liquid–solid extraction (LSE) [21] or solid
phase extraction (SPE) [23]. This process of separating the analyte from the sample matrix
and interfering compounds involves analyte–adsorbent interactions of various types, such
as ion exchange, physical adsorption, hydrophobic effect, etc. On an analytical scale, this is
a widely used method, but on a macro scale, it is not very profitable due to the high cost of
adsorbents for solid phase extraction.

The solution to this problem is dispersive solid phase extraction (d-SPE), in which
a sorbent is added to the liquid sample. After selective adsorption of the analyte, it
is recovered with a solvent [24]. The latest version of d-SPE is magnetic solid phase
extraction (MSPE). The advantage of this method is that a sorbent with magnetic properties
is dispersed in the sample solution. This provides a large interfacial contact area and the
ability to separate the sorbent from the solution using an external magnetic field [25,26].

Various methods for the removal of green pigments from plant extracts have been
investigated, including liquid–solid extraction using polymers and molecularly imprinted
polymers [27,28]. In addition, novel technologies using aqueous solutions of ionic liq-
uids, palm oil, non-ionic surfactants, and magnetic nanoparticles modified with an amine
group have been proposed [29–33]. Ferreira et al. proposed in 2021 a technology for the
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extraction of chlorophyll from biomass using aqueous solutions of ionic liquids (ILs), in
particular aqueous solutions of hexadecylpyridinium chloride ([C16py]Cl) [29]. Extraction
of chlorophyll from biomass using palm oil [30] or non-ionic surfactants [32] has also
been proposed. There are several patents for the removal and simultaneous destruction of
pigment by radiation (Korean Patent No. 10-1256222) and the removal of pigment together
with other active ingredients using diatomaceous earth (Korean Patent No. 10-1288303).
In the case of lutein, an isolation method using magnetic nanoparticles modified with an
amine group (FluidMAG-Amine) is known [31]. Removal of chlorophyll, carotenoids, and
sterols from food and plant tissue samples is possible using commercial SPE BEKOlut®

CARBON GCB columns. There are works in the literature that use iron oxide nanoparticles
modified with chlorophyll. The synthesized nanocomposites are based on surface-modified
nanoparticles, e.g., with silica, e.g., Fe3O4/SiO2 [32] or trimethylammonium hydroxide [34].
Nanomaterials containing metal oxides, particularly magnetite (Fe3O4) or maghemite
(γ-Fe2O3), have gained widespread interest due to their high affinity for many chemical
compounds, small size and high surface area to volume ratio, homogeneity of structure, and
superparamagnetism, which allows phase separation by an external magnetic field [35–39].

Carotenoids and chlorophylls coexist with each other in green plant extracts. To
isolate them in pure form, multi-stage purification processes should be used, which are not
economical on a larger scale. On the other hand, the chemical synthesis of natural pigments
is a multi-step, time-consuming process requiring many organic substances as starting
substrates. That is why new environmentally friendly cheap methods that can be used on
an industrial scale to isolate lutein from natural plant sources are constantly being sought.

The aim of this work is to provide a cost-effective method for the removal of chloro-
phyll a (Figure 1) from plant extracts using magnetic solid phase extraction (MSPE), em-
ploying biosorbent in the form of iron oxide nanoparticles (IONPs), and to achieve efficient
isolation/extraction of lutein (Figure 2). The conditions for extraction of chlorophyll a
and isolation of lutein from extracts of higher green plants, such as Urtica dioica L. and
Mentha piperita L., were optimized. The methodology described in this manuscript has
been granted a Polish patent (P.447168, 19 December 2023) entitled “Method for selective
removal of chlorophyll a from the extract of green plants and isolation of lutein from the
extract of green plants”.
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2. Results
2.1. Characteristics of IONPs Obtained by Co-Precipitation Method
2.1.1. SEM-EDS

Scanning electron microscopy (SEM) was utilized to depict the morphology of IONPs.
The SEM images of IONPs are depicted in Figure 3. The predominant shapes of IONPs were
spherical, with noticeable aggregation of nanoparticles. Energy dispersive spectrometry
(EDS) analysis indicated signals at 6.4 and 7.1 keV, attributed to iron (Fe).
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2.1.2. XPS

XPS analysis was used to chemically characterize the IONP surface. Figure 4 shows a
fitted XPS spectrum of the Fe2p region. The peak set used to recreate the spectrum envelope
was based on the model described by Grosvenor [42].
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It follows relative binding energies, peak widths, and intensities of four main compo-
nents (peaks 1–4). The numerical parameters of fitting of the Fe2p spectrum with FeOOH
peaks, i.e., binding energies (BE), peak widths (eV), and their intensities (%) based on the
model published by Grosvenor [42], are presented in Table 1. However, the peak position
is slightly shifted toward higher binding energies, and the fit clearly indicates a presence of
FeOOH on the surface.

Table 1. The results of fitting of Fe2p spectrum with FeOOH peaks: binding energies (BE), peak
widths (eV), and their intensities (%).

Sample Peak BE (eV) FWHM (eV) Intensity (%)

Fe-nps FeOOH peak 1 711.0 1.47 25.1
FeOOH peak 2 712.0 1.47 25.3
FeOOH peak 3 713.0 1.47 18.5
FeOOH peak 4 714.0 1.47 9.6
pre-peak 709.3 1.27 3.0
surface peak 715.2 2.30 9.5
sat 1 720.3 3.18 9.0

Additionally, we fitted the spectra using two models by Biesinger [43]. The first
consists of peaks corresponding to FeOOH, and the second includes peaks for FeOOH
and FeO. The two fitting results are presented in Figures S1 and S2 and Tables S1 and S2.
They are on par with the very first one presented in Figure 4, confirming the presence of
FeOOH, or at least Fe (III); however, the second one does not exclude a tiny amount of FeO.
For the sake of simplicity, the composite is termed as iron oxide nanoparticles (IONPs) in
this work.

2.2. Characterization of IONPs Using the Brunauer–Emmett–Teller (BET) Analysis

The BET-specific surface area as well as the pore size and the radius were determined
based on the vapor nitrogen adsorption/desorption isotherm at −195.843 ◦C. Figure 5
shows the N2 sorption–desorption isotherms of IONPs.
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temperature and pressure (STP), P and P0 are the equilibrium and saturation pressure of nitrogen,
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According to recommendations of the International Union of Pure and Applied Chem-
istry (IUPAC), the obtained shape of isotherm can be classified as IV (a) type of BET
isotherms [44]. As can be seen from the graph, in the low-pressure region (P/P0 < 0.4),
the adsorption and desorption isotherms superposition. At the region of P/P0 > 0.4, the
isotherms increase rapidly and form a lag loop. This shape reflects the phenomena of
adsorption in micropores at lower pressures and subsequent capillary agglomeration as
it grows.

In order to calculate the specific surface area, a linear graph with a high regression
coefficient was made, showing the relationship P/P0/n(1 − P/P0) versus P/P0. Figure 6
shows the BET line plot for IONPs.

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 7 of 25 
 

 

According to recommendations of the International Union of Pure and Applied 
Chemistry (IUPAC), the obtained shape of isotherm can be classified as IV (a) type of BET 
isotherms [44]. As can be seen from the graph, in the low-pressure region (P/P0 < 0.4), the 
adsorption and desorption isotherms superposition. At the region of P/P0 > 0.4, the 
isotherms increase rapidly and form a lag loop. This shape reflects the phenomena of 
adsorption in micropores at lower pressures and subsequent capillary agglomeration as 
it grows. 

In order to calculate the specific surface area, a linear graph with a high regression 
coefficient was made, showing the relationship P/P0/n(1 − P/P0) versus P/P0. Figure 6 shows 
the BET line plot for IONPs. 

 
Figure 6. The linear form of BET adsorption isotherm BET plots of IONPs is the ratio of partial 
pressure of the adsorbed substance to saturated vapor pressure of the adsorbed gas. Points fitted to 
a straight line are marked with circles, not fitted points are marked with triangles. 

The specific surface area calculated using the BET equation was 151.377 ± 1704 m2 g−1. 
Single-point total pore volumes of pores less than 20.7391 nm diameter at pressure P/P0 = 
0.9 were 0.2367 cm3 g−1 and 0.2509 cm3 g−1 for adsorption and desorption processes, 
respectively. The adsorption and desorption cumulative surface areas were calculated not 
only by BET but also using Langmuir, BJH, and single-point methods. Table 2 summarizes 
the results of experiments for the tested nanoparticles. The pores’ properties, calculated 
by BJH, such as the cumulative pore-specific surface area, the cumulative pore volume, 
and the average pore diameter, are collected in Table 3. 

The Barrett–Joyner–Halenda (BJH) analysis of the pore size distribution in IONPs is 
shown in Figure 7. As can be seen, the pore size distribution lies in d > 2 nm indicating a 
mesoporous structure. The average pore diameter is approximately 6 nm. However, the 
pore size distribution determined based on the desorption of nitrogen presented in Figure 
7 indicates the predominance of pores in the range of 9.1 to 12.3 nm 
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pressure of the adsorbed substance to saturated vapor pressure of the adsorbed gas. Points fitted to a
straight line are marked with circles, not fitted points are marked with triangles.

The specific surface area calculated using the BET equation was 151.377 ± 1704 m2 g−1.
Single-point total pore volumes of pores less than 20.7391 nm diameter at pressure P/P0 = 0.9
were 0.2367 cm3 g−1 and 0.2509 cm3 g−1 for adsorption and desorption processes, respectively.
The adsorption and desorption cumulative surface areas were calculated not only by BET
but also using Langmuir, BJH, and single-point methods. Table 2 summarizes the results of
experiments for the tested nanoparticles. The pores’ properties, calculated by BJH, such as
the cumulative pore-specific surface area, the cumulative pore volume, and the average
pore diameter, are collected in Table 3.

Table 2. The N2 isotherm adsorption/desorption experimental results.

Method Constant Quantity in
the Monolayer Surface Area Molecular

Cross-Sectional Area
Correlation
Coefficient

Langmuir 106.638 1/mmHg 19.291 cm3 g−1 STP 1 83.963 ± 0.858 m2 g−1 0.1620 nm2 0.9984
BET 256.731 34.779 cm3 g−1 STP 1 151.377 ± 1704 m2 g−1 0.1620 nm2 0.9996

1 Standard temperature and pressure (STP).
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Table 3. IONP pore structure parameters calculated using the Barrett–Joyner–Halenda (BJH) method.

Cumulative Surface Area of Pores Cumulative Volume of
Pores

Average Diameter of
Pores

Adsorption Desorption Adsorption Desorption Adsorption Desorption
143.947 m2 g−1 181.145 m2 g−1 0.2373 cm3 g−1 0.2715 cm3 g−1 6.5942 nm 5.9961 nm

The Barrett–Joyner–Halenda (BJH) analysis of the pore size distribution in IONPs is
shown in Figure 7. As can be seen, the pore size distribution lies in d > 2 nm indicating a
mesoporous structure. The average pore diameter is approximately 6 nm. However, the
pore size distribution determined based on the desorption of nitrogen presented in Figure 7
indicates the predominance of pores in the range of 9.1 to 12.3 nm
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2.3. Optimizing Chlorophyll a Extraction from Plant Extracts

Figure 8 illustrates the change in the absorption intensity of the acetone extract of
Urtica dioica L. after treatment with IONPs. Chlorophyll, as a pigment, has two distinct
absorption bands. The first (420–430 nm), located in the blue-violet region (the Soret band),
is a characteristic of all porphyrin derivatives. The second, located at 660 nm (the Q band)
in the red region of the spectrum, is typical of compounds derived from dihydroporphin,
such as chlorophyll. The spectrum obtained, therefore, represents the specific form of
the chlorophyll absorption spectrum, with an absorption gap in the green region. It is
noticeable that after two hours of contact with IONPs, the intensity of the absorption peak
at λmax = 423 nm significantly decreased, and the Q band at 662 nm almost disappeared.
Carotenoids, typically masked by chlorophyll, became visible (see Figure 8, insert), giving
the supernatant a yellow color, together with three characteristic absorption bands located
in the blue-violet part of the spectrum. Changes in the extract spectrum after nanoparticle
addition are accompanied by a visible color shift from green to yellow, which can be seen
with the naked eye.
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2.3.1. Adsorption Isotherm

By adding 0.15 to 0.5 g of IONPs to 3 mL of dilute acetone extract of Urtica dioica L.,
35.09% to 96.06% of chlorophyll a was removed from the extract sample. Figure 9 shows
the isotherm of the adsorption process of chlorophyll a on IONPs, plotted on the basis of
the collected experimental data together with the prediction of the Langmuir adsorption
model. Based on the parameter values of the fitted function, the capacity of the mono-
layer was determined to be 0.1025 mg/mg, and the affinity of chlorophyll for IONPs was
2.707 mL/mg (understood as the value of the Langmuir constant). The applicability of the
Langmuir model was very good (R2 = 0.9634), suggesting a sorption mechanism based on
single-site monolayer adsorption with uniform sorption energy.
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2.3.2. The Adsorption Kinetics

A critical property of sorbents is the time required to immobilize the substance to be
removed from the solution. To investigate the effect of contact time on the efficiency of
chlorophyll a sorption on IONPs, mixtures containing 0.4 g of IONPs and 3 mL of acetone
extract, diluted to give an absorbance of approximately 1 at 662 nm (8-fold dilution), were
subjected to centrifugation in a rotor for periods ranging from 0 to 2 h.

The kinetic curve illustrating the adsorption efficiency, expressed as % removal of
chlorophyll a (C0 = 0.51125 mg mL−1), as a function of contact time for IONPs is shown in
Figure 10. The amount of retained chlorophyll a per unit mass of IONPs proportionally
increases with increasing contact time. In the initial phase (first 40 min), the adsorption
process is rapid, resulting in the retention of 81.17% of the total chlorophyll a content.
Subsequently, the adsorption process significantly slows down, reaching an optimal immo-
bilization time of 2 h for the diluted extract (90.84%). Beyond this period, further changes
in absorbance are not significant, and keeping the unseparated phases in contact for 24 h
does not induce any further changes.
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Figure 10. The experimental curve representing the adsorption kinetics of chlorophyll a into the
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In the case of the undiluted extract, 3.2 g of IONPs was introduced to 3 mL of the
extract containing 4.0 mg mL−1 of chlorophyll a. Following the time of no less than 48 h,
99.01% of chlorophyll a was successfully extracted.

2.3.3. The Influence of Water on the Sorption Efficiency

The effect of introducing water into the extraction solvent on the chlorophyll removal
efficiency of IONPs was investigated in a system containing 3 mL of an 8-fold diluted
extract and 0.4 g of IONPs. As shown by the experimental data in Table 4, the changes in
the absorbance of the extract (∆A, %) at two characteristic wavelengths, namely 662 and
452 nm, induced by the addition of IONPs show an increasing trend with contact time.
However, the most pronounced changes are observed within the first hour. The presence
of more than 30% water in the extraction mixture induces non-selective sorption of all
the dyes, including both chlorophyll and carotenoids. The effect of water on the reduced
selectivity of photosynthetic pigment sorption by IONPs is illustrated in the photograph in
Figure 8. The judicious use of acetone, preferably without the addition of water or with
a water content not exceeding 30% (Table 4, Figure 11), ensures the selective removal of
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chlorophyll from the extract. The observed reduction in absorbance at 662 nm is 90.62% for
pure acetone.

Table 4. Effect of water on the sorption of photosynthetic pigments from Urtica dioica L extract on
IONPs. Spectrophotometric measurements were performed at 662 nm and 452 nm before and after
the addition of IONPs.

Time
∆A
[%]

% Acetone in Water
100% 90% 80% 70% 60% 50% 40% 30% 20% 10%

10
min

662 nm 34.75 2.73 5.42 3.05 4.39 50.00 79.44 81.11 78.29 75.42
452 nm 40.69 0.16 0.21 0.35 17.93 76.99 76.07 73.99 51.86 56.53

20
min

662 nm 59.17 0.11 −3.62 5.91 55.34 88.08 90.56 85.46 90.36 81.99
452 nm 44.39 0.05 1.86 3.68 30.18 83.59 81.77 78.03 68.22 66.22

60
min

662 nm 84.65 1.53 −0.11 47.09 70.43 93.35 92.50 92.73 95.25 98.48
452 nm 56.81 3.62 15.14 20.07 60.79 91.49 86.34 90.20 87.54 87.06

120
min

662 nm 90.62 −1.03 −0.21 47.95 89.83 79.44 81.11 78.29 75.42 64.34
452 nm 58.39 5.71 13.48 21.56 87.62 94.93 88.06 92.52 94.97 95.48
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2.4. Confirmation of Selective Sorption of Chlorophyll a on IONPs
2.4.1. HPLC Analysis

Confirmation of the selective sorption of chlorophyll by IONPs and the synthesis of
chlorophyll-modified magnetic iron oxide nanoparticles is supported by HPLC analysis. For
this purpose, 3 mL of acetone extract without water containing no more than 4.02 mg mL−1

of chlorophyll a was combined with 3.2 g of IONPs, and after 48 h, the nanoparticles were
isolated using a magnet. After phase separation, the supernatant was subjected to HPLC
analysis. Figure 12 shows the chromatogram of the chlorophyll a standard at a concentration
of 3.65 mg mL−1 (A), the chromatogram of the extract (B), and the chromatogram of the
liquid phase after 48 h contact time with IONPs (C). The chromatograms show the selective
removal of chlorophyll under the conditions of analysis.
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2.4.2. The FT-IR/PAS Spectra

Figure 13 shows the FT-IR/PAS spectra of chlorophyll, iron oxide nanoparticles
(IONPs), and IONPs with adsorbed chlorophyll. The FT-IR spectrum of chlorophyll a
shows bands characteristic for the functional groups that build its structure, i.e., C=O,
C=C, C–H, and N–H groups. A broad band with two maxima in the range of 3650–3200
cm−1 is attributed to the stretching vibrations of the O–H and N–H groups. The bands at
2952, 2924, and 2860 cm−1 indicate the presence of –CH3 and –CH2– groups. A band at
1732 cm−1 points to C=O stretching vibrations in the ester group. The band at 1652 cm−1

indicates the presence of C=O chlorophyll keto groups [45]. However, this band may also
be attributed to C=O vibrations in the carboxylate ion [46] and vibrations of C=C and/or
C–N groups [47,48]. The band at 1605 cm−1 indicates the presence of C=C bonds, while
the band at 1538 cm−1 is attributed to C=C and C=N [46] or N–H [48] functional groups.
Bands below 1400 cm−1 are characteristic for C–O, C–O–C, C–N, and C–H vibrations. The
bands in the range of 1000–800 cm−1 indicate C–C vibrations in pyrrole rings and the
vibrations of C–H groups, while the bands below 800 cm−1 are the result of the presence
of Mg ions in the chlorophyll structure (Mg–N bond) and the presence of C–N bonds [49].
The band at 1431 cm−1 may be the result of the presence of both C–O, C=C groups, and
C–H groups [50].

Analysis of the FT-IR/PAS spectrum of IONPs confirms that they are iron oxide
nanoparticles [51]. The spectrum shows well-defined peaks at 3439, 1638, 1357, 938, 632,
and 541 cm−1 and a peak of low intensity at 3695 cm−1, which presence indicates the
stretching vibrations of the vOH hydroxyl groups. The two peaks at 632 and 570 cm−1

result from the presence of iron–oxygen (Fe–O) bonds. The peaks at 3439 and 1638 cm−1 are
the result of bending vibrations of –OH hydroxyl groups and adsorbed water, respectively.
The bands at 1357, 1090, 938, and 824 cm−1 indicate the presence of nitrate groups (precursor
of iron ions).

The spectrum of IONPs with adsorbed chlorophyll a shows vibration bands of the
O–H and N–H groups (3355 and 3300 cm−1) and vibrations of the –CH3 and –CH2– groups
(2960–2860 cm−1). The bands of C=O groups are slightly shifted compared with the chloro-
phyll a spectrum (from 1732 to 1701 cm−1 and from 1652 to 1638 cm−1), which indicates
the involvement of these groups in binding with IONPs. In turn, the disappearance of the
band at 3695 cm−1 in the pristine IONP spectrum indicates the involvement of surface –OH
groups of NPs in binding with chlorophyll a. Other bands characteristic of chlorophyll a,
which are absent in the spectrum of pristine nanoparticles, also appear in the spectrum.
These are the bands at 1431 cm−1 (C–O, C=C, C–H), 1370, 1345 cm−1 (C–H), 1285, 1237,
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and 897 cm−1 (deformation vibrations of C–H groups in –CH3) and bands in the range of
1090–916 cm−1 (C–O, C–O–C). The analysis of the FT-IR/PAS spectrum of nanoparticles
with adsorbed chlorophyll confirms that chlorophyll has adsorbed on the IONP surface.
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2.5. Interactions with Solvent

Due to the lack of parameters describing with sufficient accuracy all components of the
system (i.e., organic sorbate molecules, solvents, as well as inorganic iron hydroxide with
surface hydroxyl groups), MD-based modeling was limited to a series of simplified systems
containing only a solute (sorbate) and a solvent, without a sorbent. The results were mainly
analyzed in the context of the energy interactions between a solute and a solvent, with
only a qualitative analysis of the conformation of solute molecules. In this latter aspect, no
significant influence of the solvent type on the conformation of the investigated molecules
was observed. The most notable difference is the tendency for closer interaction between
the aliphatic chain of chlorophyll and the group containing pyrrole rings, observed in the
system containing water. However, due to the fact that chlorophyll adsorption occurs in
both solvents, it is difficult to consider this effect significant in the context of adsorption
selectivity.

Table 5 presents the average interaction energies between sorbate molecules and the
solvent. Interaction energies are always the highest for chlorophyll, regardless of the
solvent, which is likely a result of the largest size of the molecule and its greater surface
contact with the solvent. Differences in interaction energies between the two solvents
indicate that chlorophyll exhibits the greatest asymmetry in the balance of solute–solvent
interactions compared with lutein and β-carotene (difference greater by ca. 100 kJ/mol).
This is primarily influenced by significantly more favorable dispersion interactions between
acetone and chlorophyll, surpassing both electrostatic interactions and analogous terms for
the other solutes.
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Table 5. The average energies of interactions between sorbate molecules and solvent (water or acetone)
as retrieved from unbiased MD simulations (in (kJ/mol)). The energies are split into Lennard–Jones
(LJ) and Coulombic contributions.

Solute
Water Acetone

Difference
Coulomb LJ Sum Coulomb LJ Sum

Chlorophyll −106.3 −259.9 −366.2 −73.7 −469 −542.7 −176.5
Carotene −31.2 −239.1 −270.3 −18.5 −331.8 −350.3 −80
Lutein −60.8 −244 −304.8 −38 −345.7 −383.7 −78.9

2.6. Isolation of Lutein from the Acetone Extract of Urtica dioica L.

About 3.2 g of IONP was added to 3 mL of acetone extracts from Urtica dioica L.
The samples were placed in a rotor at room temperature, and then the liquid phase was
periodically analyzed for dye content. It was established that the most favorable contact
time necessary for the isolation of lutein under the conditions of the analysis cannot be
shorter than 72 h. Figure 14 shows the chromatograms of the extract before and after
sorption with IONPs along with the chromatogram of the lutein standard. Figure 15 shows
overlapped spectra, recorded in the range of 350–670 nm by a DAD, for the lutein standard
and isolated lutein. The above isolation method ensures the recovery of 99.13% of lutein
with a spectral purity of 0.9973.
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2.7. Applicability of the Procedure of Chlorophyll Removal/Lutein Isolation
2.7.1. Mentha piperita L. Acetone Extract

To showcase the versatility of the proposed method for chlorophyll a removal from
another green plant, an acetone extract was prepared from dried Mentha piperita L. using
the same procedure as employed for Urtica dioica L. Chromatographic analysis indicated
a chlorophyll a content of 3.36 mg mL−1 in the extract. Subsequently, 3 mL of the extract
was combined with a precisely weighed amount of 3.2 g of IONPs. The samples were
analyzed following the identical protocol as for Urtica dioica L. The method demonstrated
the removal of 99.98% of chlorophyll a and the recovery of 99.13% of lutein with a spectral
purity of 0.9471.

2.7.2. Urtica dioica L. Dried 80% Ethanol Extract

Green plant extracts can be prepared using alternative solvents. An 80% ethanol
extract of Urtica dioica L., prepared at room temperature with ultrasound assistance for 1 h,
was dried and subsequently dissolved in acetone. Chromatographic analysis revealed a
chlorophyll a content of 3.04 mg mL−1. A 3 mL aliquot of the extract was mixed with a
precisely weighed amount of 3.2 g of IONPs and subjected to the same analytical procedure
as before. This approach resulted in the removal of 99.99% of chlorophyll a and the recovery
of 96.88% of lutein.

3. Discussion

Nanoscale iron oxides significantly differ from their bulk counterparts in terms of
optical, electronic, magnetic, and chemical properties [52]. Moreover, they possess a higher
surface area and adsorption capacity toward different molecules and ions. In the literature,
there are many examples of the use of nanoscale iron oxides as efficient adsorbents suitable
for the decontamination of drinking water from heavy metal ions such as Cr(VI), Pb(II),
Cr(III), Cu(II), Zn(II), Ni(II), and Cd(II) [53,54] or as potential drug carriers [55–58].

In this work, IONPs synthesized by co-precipitation were used for the selective re-
moval of chlorophyll from the extract of green plants. The spectra obtained in the SEM-EDS
study were similar to those reported in previous works [38,59], which confirms the relia-
bility and repeatability of this synthesis method. The synthesized IONPs had magnetic
properties. Under the influence of an applied external magnetic field, they separated
from the solution, which ensured an easy separation process. It is known that if mag-
netic nanoparticles are very small, they may exhibit superparamagnetic properties (40 to
90 Am2/kg). In this case, aggregates re-disperse after the magnet removal [60]. In the case
of our research, superparamagnetism is excluded by the size of the nanoparticles, which
exceeds 100 nm.

It should be noted that the vibrating sample magnetometer (VSM) analysis revealing
the magnetic properties of IONPs and the analysis of the surface area and pore size are
performed infrequently concerning nanoparticles [61] similar to investigation in the form
of differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) [62].
Waseem et al. [63] found the BET surface area for iron oxide nanoparticles fabricated by
a modified hydrolysis technique to be 90.71 m2 g−1. In turn, the pore diameter for the
particles was found to be 10.8 nm, with a pore volume of 0.61 cm3 g−1. Another study
by Mpelane et al. [64] showed a surface area value of 73.6 m2 g−1 of the mesoporous iron
oxide synthesized using a soft-template method. In our case, the BET surface area of the
nanomaterial obtained by the co-precipitation method was higher at 151.4 m2 g−1, with a
smaller total pore volume of 0,25 cm3 g−1.

The analysis of the FT-IR/PAS spectrum confirms that chlorophyll a has adsorbed
on the IONP surface through C=O groups. The estimated sorption capacity, which was
102.5 mg g−1, is a high value compared with the sorption capacity values estimated for
other solid sorbents with respect to chlorophyll [65–69]. So far, the sorption capacities of
micro- and mesoporous sorbents have been tested, ranging from 0.3 to 20 mg g−1, from
minerals (e.g., sepiolite, bentonite, and mesoporous silica) to activated carbon. In our
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previous work, the sorption capacity of chlorophyll a on polyvinyl chloride (PVC) was
1.12 mg/g [28]. Therefore, IONPs, due to their small size, have an advantage compared
with conventional adsorbents due to their larger surface area and available sorption sites.

According to the conducted research, the effectiveness of IONPs in removing chloro-
phyll and isolating lutein depends on the contact time of the extraction mixture, the water
content in the extraction mixture, and the ratio of chlorophyll a (mg) in the extract to the
mass of nanoparticles.

Acetone has proven to be the preferred solvent for selective solid phase extraction of
chlorophyll, and the water content should not be greater than 30%. A higher water content
enhances the hydrophobic effect, which, in turn, may be responsible for the aggregation of
chlorophyll a to minimize the interaction of the hydrophobic part of the molecule with water.
Other authors also confirm the existence of a strong hydrophobic effect, which is responsible
for the self-aggregation of chlorophyll molecules, which increases with time and with the
increase in the mole fraction of water [70]. In acetone, the chlorophyll a monomer remains
the only species present. This is evidenced by the absence of a bathochromic shift of the red
peak associated with the resulting aggregate with an absorption maximum around 713 nm
(S713). Thus, the behavior of chlorophyll with respect to IONPs depends on the nature of
the organic solvent, especially the water content, which drives the aggregation processes.
This approach would suggest that the selectivity of chlorophyll sorption to IONPs occurs
only when it is present in the monomeric form. Despite many authors emphasizing the
high efficiency of IONP biosorbents for the purification of aqueous solutions from trace
organic and inorganic pollutants [71–73], it should be emphasized that our study shows
that the aquatic environment ensures high sorption efficiency in relation to photosynthetic
pigments but does not ensure sorption selectivity.

The developed method of dispersive magnetic extraction ensures selective removal of
chlorophyll from plant extracts, the so-called dechlorophyllization. So far, many methods
have been used for this purpose using n-hexane, water partitioning, activated charcoal
bleaching, and ChloroFiltr® decolorization [74]. Obtaining decolorized extracts can be
useful in food and cosmetic industries, etc. The proposed method is, above all, cheaper
compared with ready-made ChloroFilt® filters. Compared with solvent extractions, our
method ensures lower consumption of organic solvents and the production of an additional
product in the form of chlorophyll-modified nanoparticles with the possibility of their
further use. Our method is universal. The presented research is based on exemplary
acetone extracts of two green plants and dry water–ethanol extract, which is traditionally
used to prepare food extracts from plant materials [75]. The problem with these extractions,
which our method solves, is that the use of ethanol or acetone results in the co-extraction of
high concentrations of chlorophyll [76].

As a result of optimizing the sorption conditions, it was possible to isolate high-purity
lutein in a simple and cheap way. It can, therefore, be used on an industrial scale, especially
since there is a great demand for lutein obtained from natural sources as a medicinal
substance, dietary supplement and a safe, coloring food additive. Chemical synthesis is
practically uneconomical and non-ecological.

The weaknesses of the work and the prospect of further research concern a molecular
description that would shed light on the causes of sorption selectivity. Despite MD-based
modeling revealing the tendency for closer interaction between the aliphatic chain of
chlorophyll and the group containing pyrrole rings in water, such an approximate analysis
cannot be used to explain the selectivity of chlorophyll adsorption for different solvent
compositions due to the lack of a crucial element in the studied systems (i.e., sorbent).
However, this approximate analysis indicates significant differences like solute–solvent
interactions between chlorophyll and other compounds. Further research is also required
to understand sorption kinetics and adsorption isotherms. For this purpose, tests of the
specific surface area and pore size of IONP aggregates should be planned. Future research
should also include the use of modified IONPs as new biosorbents, dye-sensitized solar
cell components, and tests of their biological activity.
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4. Materials and Methods
4.1. Chemicals

Fe(III) chloride hexahydrate (FeCl3•6H2O) and iron(II) sulfate (FeSO4•6H2O) were
purchased from Merck (Darmstadt, Germany). Chlorophyll a and lutein standards (95%
purity) were obtained from Sigma Aldrich (Missouri, MO, USA). About 25% ammonium
hydroxide and acetone were obtained from POCH S.A. (Gliwice, Poland). Ethanol was
purchased from E.Merck (Darmstadt, Germany). Water with a resistivity of 18.2 MΩ cm
was obtained from ULTRAPURE Millipore Direct-Q 3UV-R (Merck, Darmstadt, Germany).

4.2. Iron Oxide Nanoparticle (IONP) Synthesis

Iron oxide nanoparticles (IONPs) were obtained using standard co-precipitation under
basic conditions in an oxidizing atmosphere without the supply of inert gas. Iron(III) chlo-
ride (FeCl3) (0.1 M) and iron(II) sulfate (FeSO4) (0.1 M) aqueous solutions were mixed in a
volume ratio of 2:1, and then 25 mL of 25% ammonia NH3 was added dropwise to the solu-
tion with constant stirring. The reaction leads to the formation of magnetite (Fe3O4) in the
form of nanoparticles, characterized by stable magnetization at room temperature [77–79].
The resulting precipitate was separated using a neodymium magnet and washed several
times with deionized water until the solution above the precipitate reached pH 7. The black
magnetically active particle precipitate was dried at 45 ◦C.

4.3. Collection of Plant Material and Sample Preparation

The fresh plants Urtica dioica L. (Urticaceae) and Mentha piperita L. (Lamiaceae) were
harvested in the southeastern region of Poland in August 2023. The fresh plants were dried
for about three months in a shady area. These samples were then ground into a powder
and subjected to extraction. For extraction, 10 g of the plants was suspended in 120 mL of
various solvents, i.e., acetone, or 80% ethanol, in a 250 mL Erlenmeyer flask and sonicated
for 60 min in an ultrasonic bath (ultrasound power 1200 W, frequency 35 kHz) Bandelin
Sonorex RK 103 H (Bandelin Electronics, Berlin, Germany) at 80 ◦C. After cooling, the
extracts were centrifuged at 11,000 rpm for 15 min to precipitate traces of solids from the
extract. The supernatants were collected, filtered through Whatman No. 1 filter paper, and
evaporated under vacuum. The residue was dissolved in 120 mL of acetone. The obtained
samples were refrigerated at 4 ◦C for further investigations.

4.4. MSPE of Photosynthetic Pigments from Plant Extracts

A weighed amount of IONPs was added to 3 mL of acetone extracts of the dried herbs
(Urtica dioica L., Mentha piperita L., or 80% ethanol dry extract dissolved in acetone). The
samples were placed in a rotor at maximum speed (30 RPM) to ensure thorough mixing
and contact of both phases. Then, after applying a magnet (external field magnetic), phase
separation occurred. After phase separation, spectrophotometric measurements were
performed for the liquid upper phase using a GENESYS 20 spectrophotometer (Thermo
Spectronic, Norristown, PA, USA). Spectra were recorded in the range from 350 nm to
710 nm, and the absorbance measurement for chlorophyll a quantification was performed
at 662 nm and for lutein at 450 nm.

4.5. The Experimental Adsorption Isotherm

In order to optimize the effectiveness of extraction of chlorophyll a, different mass of
IONPs in the range from 0.15 to 0.5 g was added to 3 mL of acetone extract of Urtica dioica
L. diluted in order to obtain approximately unit absorbance (8-fold dilution using acetone).
The tubes were shaken 2 h using a Bio RS-24 Mini Rotator (BioSan, Medical-biological
Research and Technologies, Riga, Latvia) at 30 rpm vertical rotation movement (360◦). An
aliquot of the supernatant was further analyzed spectrophotometrically at 662 nm.
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4.6. HPLC Analysis

The HPLC analysis was performed on a Merck, Hitachi LaChrom HPLC equipped
with a DAD (diode array detector) and a Zorbax Extend C18 Agilent Technologies (Santa
Clara, CA, USA) column (150 mm × 4.6 mm I.D., 5 µm). The analysis was performed using
gradient elution: 75% acetone (0–5 min), 75–95% acetone (5–10 min), 95% (10–17 min), and
95–100% (17–22 min) at a flow rate of 1.0 mL/min. The detection was carried out at 450 nm
for chlorophyll a and 662 nm for lutein.

4.7. Quantification of Chlorophyll a and Lutein
4.7.1. HPLC

Stock solutions of 50 mg mL−1 chlorophyll a and 1 mg mL−1 lutein were prepared in
acetone. Stock solutions were serially diluted to the desired concentrations to construct
calibration curves with acetone:water mixture (4:1 v/v). The calibration curves for stan-
dards were obtained by plotting the concentration (x, mg mL−1) versus peak area (y). The
linear regression function were as follows: y = 28,340(±3058.09)x + 46,059(±19,758.17),
with n = 6, R2 = 0.9662, se = 28,796, F = 85.88, over a range of 1.0–12.5 mg mL−1 for chloro-
phyll a; and y = 44,478,432(±1,758,465)x − 2,679,781(±776,488), with n = 7, R2 = 0.9922,
se = 911,644, F = 639.78, over a range of 0.1–0.7 mg mL−1 for lutein; where R2 is the correla-
tion coefficient, se is the standard error of the regression, F is the value of the Fisher test of
significance, and n denotes the number of calibration points. The calibration curve was
used for back-calculating chlorophyll a and lutein concentration in the supernatant after
the extraction procedure. The limit of detection (LOD) and the limit of quantification (LOQ)
were determined from the calibration curves of the standards. The LOD was calculated
according to the following expression: the standard deviation of the response × 3/the
slope of the calibration curve. The LOQ was established by using the following expression:
the standard deviation of the response × 10/the slope of the calibration curve. The LOD
values were 2.09 and 0.05 mg mL−1, whereas the LOQ values were 6.97 and 0.17 mg mL−1

for chlorophyll a and lutein, respectively.

4.7.2. Spectrophotometry

The absorbance was measured at 662 nm for chlorophyll a quantification. The calibra-
tion curve was constructed from six standard solutions by plotting the absorbance against
the nominal concentration of standard. The linear curve of chlorophyll a was obtained at
concentrations ranging from 0.05 to 1.0 mg mL−1. The equation of the calibration curve
was as follows: y = 1.8118(±0.029)x + 0.0322(±0.016), with n = 6, R2 = 0.9989, se = 0.025,
F = 3693.28. The LOD and LOQ values were 0.026 mg mL−1 and 0.088 mg mL−1, respec-
tively. The quantitative determination was based on a standard curve or comparison with
the absorbance of the standard solution at a concentration within the linear response.

4.8. FT-IR/PAS Measurements

Fourier transform photoacoustic infrared spectra (FT-IR/PAS) of the studied sam-
ples were recorded using an Excalibur FT-IR 3000 MX spectrometer (Bio-Rad, Hercules,
CA, USA) equipped with a PA301 photoacoustic cell (Gasera, Turku, Finland) within
3800–500 cm–1 range, at a resolution of 4 cm–1 and 2.5 kHz mirror velocity. Before data
collection, dry helium was used to purge the photoacoustic cell. The carbon black standard
was used as a reference material to collect FT-IR/PAS spectra. The spectrum consisted of
1024 scans, which provided a good signal-to-noise ratio. No smoothing functions were
applied. All spectral measurements were performed at least in triplicate.

4.9. XPS Measurements

Powdered samples for XPS analyses were pressed into pellets using hydraulic press.
After degassing in load lock for 16 h, they were transferred into the analysis chamber of
the Prevac UHV system (Rogów, Poland). All the measurements were carried out using
a Scienta R4000 analyzer equipped with a monochromatic (XM 650, 0.2 eV band) Al Kα
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source (SAX-100, 1486.6 eV, 15 mA, 15 kV). Instrument base pressure was 5 × 10−9 mbar.
For spectra processing and composition calculations, Casa XPS v. 2.3.25 PR1 software
was used.

4.10. Nitrogen Adsorption/Desorption Isotherm

Analysis was carried out using an ASAP 2020 instrument (Micromeritics, Norcross, GA,
USA). Before the analysis, the sample underwent two degassing cycles under high vacuum
conditions. Firstly, in the degassing port, the degassing process lasted 12 h in a temperature
of 200 ◦C. Second, degassing process was conducted in the analysis port just before the
proper analysis (4 h in temperature 200 ◦C). MicroActive V 4.06 software (Micromeritics
Norcross, GA, USA) was employed to compute the specific surface area (SBET) and the
total pore volume (Vt) from the adsorption/desorption isotherms. The determination of
SBET values utilized the standard Brunauer–Emmett–Teller (BET) equation, applied to
nitrogen adsorption data within the relative pressure range of P/P0 from 0.05 to 0.30. On
the other hand, Vt was assessed based on the volume adsorbed at a relative pressure of
P/P0 of approximately 0.98.

4.11. Mathematical Modeling

The equilibrium adsorption isotherm was modeled by the Langmuir equation in the
following form:

qe = qm × KL × Ce/(1 + KL Ce), (1)

where qe is the amount adsorbed at the equilibrium conditions, corresponding to the sorbate
concentration in the solution (Ce), KL is the Langmuir constant, and qm is the monolayer
capacity, i.e., the maximum amount of sorbate that can be adsorbed under given conditions.
The data points (Ce, qe) were retrieved from measured concentration by using the mass–
balance relationship and known operating conditions (mass of the sorbent and volume of
the solution).

4.12. Molecular Dynamics Simulations

The three systems under consideration included a single solute molecule (chlorophyll a,
lutein, or β-carotene) solvated in an explicit solvent, i.e., either water or acetone. Parameters
for all solute molecules as well as for acetone corresponded to the GROMOS united-atom
force field [80] and were generated by using the Automated Topology Builder online
server [81,82]. For water, the SPC model [83] was applied. The sizes of simulation boxes
were equal to ca. 5 × 5 × 5 nm3 (water-containing systems) or ca. 7.8 × 7.8 × 7.8 nm3

(acetone-containing systems). The periodic boundary conditions were applied in all cases.
After the initial procedures of geometry minimization and equilibration, the systems were
subjected to molecular dynamics (MD) production simulations lasting 50 ns with the data
saved every 2 ps. MD simulations were conducted by using GROMACS 2023 package [84]
with a timestep of 2 fs. The MD protocol involved the use of the Parrinello–Rahman
barostat [85] and the V-rescale thermostat [86]. The solute bond lengths were controlled
by using the LINCS algorithm [87], and the non-bonded interactions within the system
were treated with a single cutoff distance set to 1.4 nm and the Verlet list scheme. The
reaction-field correction [88] was applied using a relative dielectric permittivity of 61.

5. Conclusions

This research presents the application of co-precipitation-synthesized IONPs for the
removal of chlorophyll from green plant extracts and the concurrent isolation of lutein. The
proposed method offers an efficient, versatile, and cost-effective approach for obtaining
photosynthetic pigments suitable for various applications. It is not without significance
that IONPs are considered safe for humans and the environment.

Characterization of the IONPs’ chemical composition was conducted using SEM-
EDS, XPS, and FT-IR/PAS, confirming the sorption of chlorophyll a on the nanoparticles
through interactions of its carbonyl groups and FeOOH or FeO on the bio-nano-sorbent
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surface. This study concludes that an optimal combination of IONPs and acetone extract
in a 1:3 ratio (mg chlorophyll a per g IONPs) at room temperature, with a contact time
of 48 h for chlorophyll a removal or 72 h for lutein isolation, ensures effective outcomes.
Moreover, acetone without the addition of water as a reaction medium is identified as the
most effective for the selective sorption of chlorophyll a in the monomeric form. Thanks to
the proposed procedure of using IONPs for the purpose of dispersive magnetic extraction
into the solid phase of acetone extracts of green plants, on the example of mint and nettle,
it is possible to obtain the following benefits: (i) dechlorophyllization of plant extracts,
(ii) obtaining IONPs modified with chlorophyll, and (iii) lutein isolation. All stages are
cheap, are simple, and do not require advanced equipment and can be used on a larger
industrial scale.

6. Patents

Polish patent (P.447168, 19 December 2023): “Method for selective removal of chlorophyll
a from the extract of green plants and isolation of lutein from the extract of green plants”.
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mdpi.com/article/10.3390/ijms25063152/s1.
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