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ABSTRACT: Quartz crystal microbalance with dissipation monitoring
(QCM-D) has become a major tool enabling accurate investigation of the
adsorption kinetics of nanometric objects such as DNA fragments,
polypeptides, proteins, viruses, liposomes, polymer, and metal nanoparticles.
However, in liquids, a quantitative analysis of the experimental results is often
intricate because of the complex interplay of hydrodynamic and adhesion
forces varying with the physicochemical properties of adsorbates and
functionalized QCM-D sensors. In the present paper, we dissect the role of
hydrodynamics for the analytically tractable case of stiff contact, whereas the
adsorbed rigid particles oscillate with the resonator without rotation. Under
the assumption of the low surface coverage, we theoretically study the excess
shear force exerted on the resonator, which has two contributions: (i) the
fluid-mediated force due to flow disturbance created by the particle and (ii)
the force exerted on the particle by the fluid and transmitted to the sensor via contact. The theoretical analysis enables an accurate
interpretation of the QCM-D impedance measurements. It is demonstrated inter alia that for particles of the size comparable with
protein molecules, the hydrodynamic force dominates over the inertial force and that the apparent mass derived from QCM
independently of the overtone is about 10 times the Sauerbrey (inertial) mass. The theoretical results show excellent agreement with
the results of experiments and advanced numerical simulations for a wide range of particle sizes and oscillation frequencies.

■ INTRODUCTION
Quartz crystal microbalance (QCM) technique1,2 relies on the
fact that matter adsorbed on the surface of the fast oscillating
crystal changes the frequency of the oscillations. In vacuum,
the shift in the resonant frequency of the crystal is linearly
proportional to the mass of the adsorbed film via the seminal
Sauerbrey equation,3 allowing extremely accurate measure-
ments down to nanograms.2 The quantitative interpretation of
the QCM-D measurement in liquids4,5 (where “D” stands for
dissipation monitoring via probing the decay rate of the
oscillations) is also well-established for planar adsorbed
(including viscoelastic) films,6−9 although the challenges with
regards to application of the standard model for the planar
layered systems still remain.
Interpreting the QCM-D measurements due to discrete

adsorbates (such as, e.g., nanoparticles, liposomes, viruses,
proteins, and so forth) in liquids remains a challenge mainly
due to the interplay of complex hydrodynamics, which has not
yet been yet fully resolved and a priori unknown viscoelastic
contact dynamics, which depends on physicochemical proper-
ties of the surfaces (i.e., the adsorbate and the resonator).2 The
experimental observations showing the considerable deviation
from the Sauerbry equation due to discrete adsorbates are
known since the early days of liquid-phase QCM and the

“trapped liquid/solvent” hypothesis and the corresponding ad
hoc phenomenological models were put forward to explain the
apparent discrepancy in the mass of the adsorbates probed by
the QCM.10−12

The impedance probed by the QCM-D is the ratio v/ c,
where is the area-averaged tangential stress (i.e., the net
shear force exerted on the surface of the oscillating quartz
resonator divided by its surface area) and vc is the velocity of
the crystal oscillations. Here, and vc and, therefore, are all
complex quantities characterized by the amplitude and phase.
In the framework of the small load approximation, the shift in
oscillation frequency, Δf, and in half-bandwidth, ΔΓ (related
to a dissipation factor ), are linearly proportional to the
impedance, f fi i /( )0 q= , where f 0 stands for the
fundamental oscillation frequency (typically 5 MHz) and the
resonator’s shear-wave impedance q is a known quantity.
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In liquids, the small load approximation holds given that
f f .0| | In liquids, in contrast to vacuum where the rigidly

attached particles only alter the mass (i.e., solid inertia) of the
resonator contributing to the frequency shift, Δf, according to
the Sauerbrey equation, the discrete adsorbates modify the
viscous shear force exerted onto the sensor, contributing to the
shifts in the resonant frequency, Δf, and the bandwidth, ΔΓ
(absent in vacuum).
In the absence of particles, the horizontal small-amplitude

time-periodic oscillations of the resonator at z = 0 with velocity
xv tcos0 create unidirectional oscillatory flow of the viscous
liquid of viscosity η and density ρ occupying the upper half-
space z > 0 with velocity given by the real part of

xv e ez t z
0

/ i( / ).13 The flow disturbance propagates upward
as the transverse wave is attenuated by the exponential factor
with δ = (2ν/ω)1/2 known as viscous penetration depth, where
ν = η/ρ stands for the kinematic viscosity of the fluid (see
Figure 1). Computing the shear stress at the resonator,

u z( / )xz x z 0= = , and dividing by the resonator velocity
readily yields the impedance v(i 1) /0= ,5 correspond-
ing to a negative frequency shift and positive dissipation factor
(as compared to the unloaded resonator oscillating in
vacuum). Obviously, the particles located above the resonator
would perturb this flow and modify the shear stress exerted on
the resonator. The contribution to impedance due to the flow
disturbance is entirely fluid-mediated, i.e., it takes place for
both adsorbed and freely suspended particles as it does not
require a physical contact between the particle and the
resonator. For the adsorbed particle, however, there is another
contribution to impedance due to the force exerted on it by the
(perturbed) flow and transmitted to the resonator via contact.
The prior works applied a variety of numerical methods to

account for the hydrodynamics and compute the perturbed
viscous stress exerted on the resonator due to an adsorbed
particle. Various factors, such as particle size, surface coverage,

particle mobility (e.g., rocking vs sliding motion), deviation
from sphericity, and other factors, were considered using finite
element method (FEM) in the early works14,15 and later with
lattice Boltzmann method16−19 and the immersed boundary
method (IBM).20,21 Although the numerical methods are very
powerful, the complex interplay of various factors and
uncertainty of physicochemical properties and/or parameters
governing the contact dynamics call for a more analytical
approach able to dissect the role of the hydrodynamic forces in
QCM-D analysis of discrete adsorbates. In ref 22 the
hydrodynamic contribution to the impedance due to an
adsorbed particle was approximated by the analytical result for
the force exerted on a rigid sphere oscillating in an unbounded
viscous liquid (see, e.g., ref 13). One may expect such an
approximation to hold for a relatively large (i.e., with respect to
the penetration depth δ) particle as most of its surface is in
contact with otherwise quiescent fluid located above the
viscous penetration layer. Such assumption, however, requires
justification since the unsteady viscous flow in a wall-bounded
domain could be quite different from the unbounded flow.23

Obviously, for a particle of the size comparable to or smaller
than the viscous penetration depth, this approximation does
not apply. Moreover, the above approximation implicitly
assumed that the hydrodynamic contribution to the contact
force dominates over its fluid-mediated counterpart, which was
entirely neglected.
The theory of hydrodynamic contribution to the QCM-D

impedance due to adsorbed particles was recently developed in
ref 24. This approach involved a number of ad hoc
approximations and simplifying assumptions and was later
revisited and extended in ref 25, where the excess shear force
(or impedance) due to the presence of either freely suspended
or rigidly attached (i.e., oscillating with a resonator as a while)
discrete particles was determined analytically using a distant-
particle asymptotic approximation. The closed-form expres-
sions for the impedance and the velocity (linear and angular)
of the freely suspended particle derived in ref 25 are in a very
close agreement with the numerical (FEM) computations
down to a rather close proximity of less than a particle radius.
It was found, in particular, that for some realistic experimental
conditions, the flow disturbance due to a layer of freely
suspended (untethered) small particles located above the
resonator produces the common (“inertial loading”) response
with Δf < 0 and ΔΓ > 0 of a magnitude of a few Hertz (at f0 =
5 MHz). However, Δf can flip sign to positive depending on
the value of a/δ and the proximity to the resonator. The same
layer of adsorbed particles, however, results in the positive
frequency shift and unorthodox negative bandwidth shift of
some hundreds of Hertz. Notice the positive frequency shift,
which is commonly associated with nonhydrodynamic effects,
such as viscoelasticity of the adhesive contact (“elastic
loading”), while ΔΓ < 0, implies reduced dissipation. The
reason for the seemingly unphysical (sign- and magnitude-
wise) response is that the analysis only concerned the excess
shear due to the flow disturbance, whereas an adsorbed particle
oscillating with a resonator as a whole excludes a fluid volume
above it and also shields the resonator from the transverse
shear wave that persists in the particle absence. The net excess
shear force due to adsorbed particles should, however,
combine the fluid-mediated force (as in ref 25) and the
contact force. In the present paper, we provide a detailed
theoretical study of the net excess shear force (impedance) due
to discrete adsorbates at low surface coverage in the

Figure 1. Schematic illustration of the problem. A spherical particle of
radius a and density ρs, immersed in an incompressible viscous liquid
of density ρ and viscosity η, is rigidly attached to an infinite horizontal
plane at z = 0 oscillating at MHz frequency with velocity
v = v0x ̂ cos ωt. The undisturbed (i.e., in the absence of the particle)
velocity profiles, u0 = v0x ̂ Re[e−z/δe−i(ωt−z/δ)], are shown at two time
instants ωt = 0 (solid, red) and ωt = π/2 (dashed, blue) vs the scaled
vertical distance z/δ. The short-dashed vertical line stands for the zero
value of the velocity.
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analytically tractable limit of a stiff contact, which allows to
decouple and analyze the role of hydrodynamics independently
from other physical phenomena.

■ THEORETICAL SECTION
Problem Formulation. The viscous incompressible liquid

in half-infinite space z > 0 is set into motion by the time-
periodic horizontal oscillations of the infinite plane at z = 0
along the x-axis with frequency ω and amplitude v0 (see Figure
1). We further assume that a spherical particle of radius a
firmly adheres to the plane and therefore oscillates with it in-
sync without rotation. Assuming small amplitude of the
oscillations, v0/ω ≪ a, to the leading approximation, the
flow velocity V satisfies the unsteady Stokes equations

V V V

V V x

P

z r a t v t

, 0,

( 0) ( , ) cos( )

t
1 2

0

= + · =

= = = = (1)

where P is the pressure, ρ and ν = η/ρ are the density and the
kinematic viscosity of the fluid, respectively, and the spherical
distance r = |x − xc| is measured from the particle center
located at xc = (0, 0, h). Although the particle adhesion
corresponds to a vanishing separation distance, h ≈ a, we
follow the general formulation24,25 and keep an arbitrary
proximity h ≥ a in the analysis below. We introduce
dimensionless variables by normalizing fluid velocity with v0,
pressure with ηv0/a, time with ω−1, and distance with a. Thus,
the dimensionless (complex) flow field v and pressure p
defined via V = v0 Re[e−iωtv] and P = ηv0 Re[e−iωtp]/a, where
Re stands for the real part, satisfy

v v v

v x v x

p

z r

, 0,

( 0) , ( 1)

2 2= + · =

= = = = (2)

Here, λ2 = −ia2ω/ν = −2i(a/δ)2. In the absence of a particle,
the solution of eq 2 is given by u xe z

0 = , where λ =
(1 − i)(a/δ) and p0 = 0.
When the particle is present, no analytical solution of eq 2 is

readily available; however, some analytical progress is possible,
e.g., for a distant particle (see ref 25). The major aim of this
paper is determining the x-component of the complex excess
shear force (i.e., in excess to the shear force applied by the
particle-free background flow), F, exerted on the oscillating
plate in the incompressible viscous liquid due to an adsorbed
particle.
For low values of the particle surface number density, ñ,

when mutual hydrodynamic interactions between particles can
be neglected, the dimensionless excess shear force F/ηav0 due
to a single particle translates into the dimensionless impedance,

an/( ) probed by the QCM-D device. The net excess shear
force F has two contributions: (i) the fluid-mediated
contribution (screening or shielding force) due to the presence
of the particle and (ii) the direct force the particle exerts on the
surface via contact.
Fluid-Mediated Force. The dimensionless stress tensor

corresponding to {v, p} in eq 2 is defined by σik = −pδik + ∂kvi
+ ∂ivk. In the absence of the particle, σik has only xz and zx
components, where at the plane z = 0 equals to −λ. If the
particle is present, it modifies the stress exerted on the
resonator by the fluid in the vicinity of the contact; however,
far from the particle, we shall still have σxz ≈ −λ. Therefore,
the net fluid-mediated excess shear force Fa (i.e., in excess of

−λ times the surface of the resonator) exerted on the
oscillating plate due to the presence of an adsorbed particle
is defined by

F x y( ) d d
z

xza
0

= +
= (3)

The flow perturbation, u v xe z= , is governed by

u u u

u u x

p

z r

, 0,

( 0) 0, ( 1) (1 e )z

2 2= + · =

= = = = (4)

The stress tensor σik′ = −pδik + ∂kui + ∂iuk corresponding to
{u, p} in eq 4 obeys λ2ui = ∂kσik′ and can be written via σik as

( ) eik ik ix kz iz kx
z= + + (5)

Thus, Fa in eq 3 can then be written as

F x y u x yd d d d
z

xz
z

z xa
0 0

= =
= = (6)

The direct numerical study of the force using eq 6 is
problematic. The general structure of unsteady Stokes flows
generated at the particle surface indicates that, at distances
from the boundary greater than the viscous penetration depth
δ/a ∝ |λ|−1, the flow u a is a superposition of a potential
(inviscid) flow and an exponential correction.13 However, the
dominant potential flow component makes no contribution to
the viscous shear force in eq 6. Hence Fa is controlled entirely
by the exponentially small correction to the potential flow.
This renders accurate numerical computation of Fa over an
infinite plate in eq 6 challenging.
We rewrite Fa in the form which is more suitable for the

numerical study by using the Lorentz reciprocity.26,27 For an
arbitrary incompressible dual flow satisfying vi k ik

2 = , we
have

v
x

u
x

( ) ( )i ik

k

i ik

k
=

(7)

Integrating eq 7 over the fluid volume in the semi-infinite
domain, applying the divergence theorem, and using the
original flow field v satisfying eq 2 as the dual flow, we find that

F n Se d
4 e (sinh cosh )

e (sinh 2 2 cosh 2 )
r

z
xk k

h

h

a
1

2

=

+

=

(8)

where we made use of eq 5, giving the traction at the particle
surface as σxknk = −λe−λz cos θ + σxk′ nk, where θ is the polar
spherical angle. Thus, instead of integration over the infinite
plane at z = 0 in eq 6, the excess shear force Fa can be
alternatively evaluated by integrating the traction σxk′ nk over the
particle surface at r = 1. Notice also that the last two
(analytical) terms in the r.h.s. of eq 8 comprise (up to a factor
of π) the net hydrodynamic contribution to the impedance due
to the particle near contact reported in ref 24. The numerical
results indicate that the first (integral) term is usually
dominant over the last two (analytical) terms.
Contact Force and Torque. For freely suspended

particles, the excess shear force exerted on the resonator is
mediated solely by the suspending fluid.25 The adsorbed
particle not only modifies the flow above the resonator (i.e., via
Fa) but also applies a force to it via contact. We assume that
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the contact force the firmly attached particle exerts on the
plane, Fc, is equal in magnitude and opposite in sign to the
force that the plane exerts on the particle (see also ref 21). The
contact force Fc is determined from the Newton’s force
balance:

U n S Fd
r

xk k
2

1
c=

= (9)

where for a particle moving with a plane as a whole, its
dimensionless translation velocity U = 1 and the traction σiknk
correspond to the original flow in eq 2. Here, the parameter
ξ = m/ρa3, where m stands for the particle’s mass, characterizes
the solid inertia.
Substituting the traction at the particle surface σxknk =

−λe−λz cos θ + σxk′ nk into eq 9 yields the following result:

F n S

F

4 e (sinh cosh )
d

h

r
xk kc

1

2

c
2

= +

=
=

(10)

where Fc′ is the hydrodynamic part of the contact force. The
net excess shear force due to an adsorbed particle can now be
found as F = Fa + Fc. Notice that upon neglecting the
hydrodynamics entirely, the net excess force is due to inertial
mass of the particle, F = −λ2ξ = −(4π/3)(ρs/ρ)λ2 = imω/ηa,
being equivalent to the (dimensional) impedance nmi= .
Substituting ω = nf2 0 (where n is the odd overtone order)
and using the small-load approximation for the above
impedance, we readily arrive at the classical Sauerbrey
equation:1

f

f
n

nm
m

iS

0 q q
=

(11)

where mq q= /(2f 0) and mñ is the areal mass density (both
have units of mass per unit area).
The contact torque Lc (the y-component, scaled with ηa2v0)

the adsorbed particle exerts on the resonator could also be of
interest toward estimating the stiffness of the contact and it is
given by (with respect to the particle center at z = h)

z h x n S L
2
5

( ) d
r

xk zk k
2

1
c= [ ]

= (12)

where Ω is the dimensionless angular velocity of the particle
scaled with v0/a. For an adsorbed particle with a stiff contact
(i.e., without rotation, Ω = 0), there is no contribution of the
solid inertia in the l.h.s. of eq 12 and the contact torque
reduces to

L z h x n S( ) d
r

xk zk kc
1

= [ ]
= (13)

The contact torque in eq 13 can be rewritten as an integral
over the perturbed traction σik′ nk using eq 5 as (cf. eq 22 for
in ref 25)

L n Scos sin cos d

4 e sinh
3(sinh cosh )

r
xk zk k

h

c
1

2

= [ ]

+

= Ä

Ç
ÅÅÅÅÅÅÅÅÅ

É

Ö
ÑÑÑÑÑÑÑÑÑ (14)

If contact torque with respect to the point of contact (at z = 0)
is considered, then we readily have

L z x n S L h n S

L hF

( ) d d
r

xk zk k
r

xk kc
(c)

1
c

1

c c

= = +

= +
= =

(15)

where Fc′ is the hydrodynamic part of the contact force in eq
10.
Notice that the above derivations of Fa and Fc are rigorous

and do not involve any approximation, besides from the
assumption of small-amplitude oscillations that allowed neglect
of the nonlinear inertia terms in the flow equations. The
resulting expressions involve integrals of the traction associated
with the perturbed flow, σik′ nk, over the particle surface at r = 1
that can be performed numerically.
Small-Particle Limit. Let us consider the small-particle (or

low-frequency) limit, |λ| ≪ 1, for which the steady Stokes
equations hold to the first approximation as the unsteady term
λ2u in eq 4 produces ( )2| | corrections in the solution.28 We
next expand the perturbed flow u in eq 4 as u = λu1 + λ2u2 + ...,
p = λp1 + λ2p2 + ..., and at the leading order we have

u u

u u x

p

z r z

0, 0,

( 0) 0, ( 1)

1
2

1 1

1 1

+ = · =

= = = = (16)

Notice that the analytical terms in the r.h.s. of eqs 8 and 10 are
all ( )2| | , meaning that at the leading order ( )| | , we have

F F n Sd
r

xk kc
(1)

a
(1)

1

(1)= =
= (17)

In other words, for small particles, the fluid-mediated
contribution is compensated by the (hydrodynamic part of)
contact force to the leading approximation in λ, such that the
net excess force due to an adsorbed particle F = Fa + Fc reduces
to ( )2| | . Equation 16 governs the problem of a steady linear
shear flow past a fixed sphere in contact with a plane wall, and
its exact solution using special “tangent sphere” coordinates is
given in ref 29. In particular, the dimensionless contact force to
the leading approximation found from eq 17 is given by Fc =
−Fa = −6πfλ + ( )2| | , where the constant f ≈ 1.7005.29,30

Analogously, at |λ| ≪ 1, the torque applied on the adsorbed
particle can be estimated: the second (analytical) term in eq 14
is ( )3| | , and the integral term to the leading approximation
contributes Lc ≈ −4πgλ, where the constant g ≈ 0.944.30,31

Given the asymptotic behavior of Fc above, we readily find that
at contact (h = 1), the torque with respect to the point of
contact to the leading approximation yields Lc(c) ≈
−(6f + 4g)πλ = −13.981πλ.
At the subleading order of ( )2| | , we have the following

problem:

u u

u u x

p

z r z

0, 0,

( 0) 0, ( 1) /2

2
2

2 2

2 2
2

+ = · =

= = = = (18)

The solution of eq 18 that would allow determining the
subleading corrections to Fa(2) and Fc(2) is possible following the
analysis in ref 29.
Moreover, using eqs 8 and 10, we find that due to the

mutual cancelation of the terms involving σxk′(2) in Fa(2) and Fc(2),
the net excess shear force to the leading approximation is yet
determined by σxk′(1) in eq 16
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F F F z n Sd
r

xk ka c
2

1

(1) 2= +
= (19)

where the surface integral can be evaluated using the revised
solution of ref 29 giving the value of ≃−40.159.31 Thus, the
impedance at the leading approximation is ∝ λ2 and
determined by the interplay of the viscous and inertia forces;
the ratio of the integral (viscous) term to the Sauerbrey
(inertia) term in eq 19 is equal to ≃9.59 for neutrally buoyant
particles. Notice that since λ2 = −ia2ω/ν is purely imaginary,
the leading contribution to the real part of F reduces to ( )3| | ,
implying that for small particles, the dissipation shift is
expected to be smaller in comparison to the frequency shift by
a factor ∝ |λ| (see Figures 3c and 4a below).

■ NUMERICAL COMPUTATIONS
The numerical solution of eq 4 is performed in the
dimensionless cylindrical coordinates {ϱ, ϕ, and z} (all
distances scaled with a), such that x = ϱ cos ϕ and
y = ϱ sin ϕ, with its origin at the plate at z = 0 and the z-
axis passing through the center of the adsorbed spherical
particle.
We use the following ansatz admitting simple dependence

on the azimuthal angle: v = z( , ) cos , v =
z( , ) sin , vz = z( , ) cos , and p = z( , ) cos ,

which reduces the solution to two spatial dimensions.25,32 The
corresponding problem for , , , and is defined in the
rectangular domain 0 ≤ ϱ ≤ ϱm, 0 ≤ z ≤ zm with an exclusion
of the half unit disk centered at (0, h) representing the
adsorbed particle. The pressure is set to a fixed (zero) value
far from the particle at z = zmax and ϱ = ϱmax. The boundary
condition u = 0 is applied at ϱ = ϱmax, z = 0, and z = zmax. We
set no-flux boundary condition at ϱ = 0, while at the boundary
of half-circle, we specify 1 e z= = and 0= .
We then apply the FEM implemented in Mathematica 12.0 to
solve eq 4. A typical mesh size is selected to be 0.05 within the
domain and 0.025 along the boundaries. Notice that for stiff
contact, the particle is oscillating in-sync with the resonator
and there is no relative shearing (or sliding) motion between
the two. In ref 25, the fluid-mediated part of the excess shear
force (Fa) for an adsorbed particle was determined via the
numerical solution of the auxiliary problem corresponding to a
stationary (heavy inertial) particle located above the resonator,
and this resulted in numerical difficulties at close proximity

owing to strong lubrication forces. The direct formulation of
the problem in eq 4 circumvents these complications, allowing
for an accurate numerical solution near contact, h → 1.
Numerical computation shows that flow u converges at

ϱmax ≃ 9 and zmax ≃ 9 + h. The typical flow and pressure
disturbance due to an adsorbed particle for δ = 1 and h = 1.001
in the meridional plane xz−plane (for ϕ = 0) are shown in
Figure 2a,b at two instances, ωt = 0 and ωt = π/2, respectively.
It can be readily seen that the interaction of the transverse
wave originated at the oscillating plate (see the undisturbed
velocity in Figure 1) with the particle creates a rather complex
flow pattern with transient recirculations.
The predictions of the FEM computations are compared to

the results of numerical simulations using the frequency-
domain lattice Boltzmann method (FreqD-LBM) to solve the
oscillatory Stokes equations. FreqD-LBM was first proposed in
ref 33, and it amounts to a variant of the LBM, where the
populations are replaced by complex amplitudes of the
oscillation. FreqD-LBM maintains the simplicity of the
conventional LBM and also covers viscoelasticity.18 A typical
simulation box contains 20 × 20 × 20 nodes and typical times
per run range between a few minutes and a few hours on a
standard desktop computer. Following ref 19, the particle is
not part of the simulation volume, while its surface is part of an
oscillating boundary. Differing from ref 19, we assumed infinite
contact stiffness. Bounce back of the populations from the
surface causes a transfer of momentum to the sphere, which is
transferred to the resonator through contact. The fluid-
mediated force results from the momentum transfer during
bounce back of the populations at the resonator surface.
Periodic boundary conditions were applied at the side
boundaries, while at the top boundary (located at the height
of 2.5a), the populations were matched to an analytical
solution. The accuracy of FreqD-LBM is constrained by the
surface coverage (i.e., the finite lateral size of the simulation
box) and the grid resolution, Δx ≪ δ; insufficient grid
resolution results in fictitious fluid viscoelasticity. Therefore,
the simulations were performed using Δx/δ < 0.03 for particles
with a/δ ≲ 0.4 (see Figure 4a,b below). FreqD-LBM
simulations for larger adsorbates would require considerably
longer CPU times, the limitation which could potentially be
resolved by parallelizing the code. This undertaking is beyond
the scope of the present paper and will be reported elsewhere.

Figure 2. Perturbed flow (streamlines) and pressure (color map) fields in eq 2 due to an adsorbed particle for δ/a = 1 in xz-plane (for ϕ = 0) at
two different time instances: (a) velocity Re , Re{ [ ] [ ]} and pressure Re[ ] corresponding to ωt = 0 and (b) velocity Im , Im{ [ ] [ ]} and
Im[ ] corresponding to ωt = π/2.
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■ EXPERIMENTAL SECTION
Materials. All chemical reagents comprising sodium

chloride, sodium hydroxide, hydrochloric, and sulfuric acids
were commercial products of Sigma-Aldrich and were used
without additional purification. Ultrapure water was obtained
using the Milli-Q Elix&Simplicity 185 purification system from
Millipore.
Positively charged (amidine) and negatively charged

(sulfonate) polymer particles supplied by Invitrogen (Life
Technologies Polska Sp.z.o.o., Warsaw, Poland) were used in
the deposition kinetic measurements carried out by QCM.
The gold/quartz/silicon dioxide (SiO2) sensors were

supplied by Q-Sense, Gothenburg, Sweden, whereas the bare
gold sensors were supplied by QuartzPro, Jarfalla, Sweden.
Both sensor types were characterized by a fundamental
frequency of 5 MHz. Before each measurement, the sensors
were cleaned in a mixture of 96% sulfuric acid (H2SO4),
hydrogen peroxide (30%), and ultrapure water in volume ratio
of 1:1:1 for 10 min. Afterward, the sensor was rinsed by
deionized water at 80 °C for 30 min and dried out in a stream
of nitrogen gas.
Methods. The bulk concentration of particles in the stock

suspension was determined by a dry mass method. Before each
experiment, the stock suspension was diluted to the desired
concentration by pure NaCl solutions with the pH adjusted to
either 4 (by adding HCl) or 5.6 (by adding pure distilled
water). The particle density was determined by the
densitometry/dilution method. The diffusion coefficient of
the particles was determined by dynamic light scattering using

the Zetasizer Nano ZS instrument from Malvern. The
hydrodynamic diameter was calculated using the Stokes−
Einstein relationship. The particle size was determined
independently by atomic force microscopy (AFM). The
electrophoretic mobility of the particles was acquired using
laser Doppler velocimetry using the same apparatus. The
particles’ zeta potential was calculated using the Henry
formula.
Relevant parameters characterizing the topography of the

sensors comprising the average height, root-mean-square
(rms), the skewness, and the roughness correlation length
were determined by AFM imaging, carried out under ambient
conditions in a semicontact mode.34

In the case of the positively charged amidine particles, the
QCM measurements were carried out according to the
standard method described in ref 35 using the Q-Sense
Instrument. First, a stable baseline in pure electrolyte of a fixed
concentration was attained in the QCM-D cell (Q-Sense
window cell QWM401) under a controlled volumetric flow
rate. Afterward, the particle suspension of a fixed concentration
was flushed at the same flow rate. Finally, the desorption run
was initiated, where a pure electrolyte solution of the same pH
and ionic strength was flushed through the cell. In the case of
the negatively charged sulfonate particles, a macrocation (poly
allyl chloride, PAH) adsorption step was first performed before
initiating the particle deposition run.
The real particle mass coverage at the sensor was

determined using the AFM method, as previously described.35

Accordingly, a QCM run was stopped after completing the
desorption step, and the sensors were removed from the

Figure 3. Excess shear force (real and imaginary part) due to adsorbed particles (h = a) vs a/δ. (a) Fluid-mediated contribution Fa: the solid
(black) lines stand for the numerical results, short-dashed (gray) lines for the small-λ asymptote, Fa(1) and long-dashed (red) lines correspond to the
distant-particle prediction Faasym at h = a in eq 20; and the blue curves stand to the analytic part (last two terms) of Fa in eq 8; (b) hydrodynamic
part of the contact force Fc′ (black, gray); the short dashed lines for the small-λ asymptote Fc(1) and long-dashed (blue) line for the imaginary part of
the net contact force Fc (the real part is unchanged) for neutrally buoyant particles (for ξ = 4π/3); and (c) various components of the excess force
for a/δ ≲ 0.5: Fc (blue, for ξ = 4π/3), Fa (red), and F (black); solid and long-dashed lines stand for real and imaginary parts of different terms,
respectively. (d) Comparison of the net excess force F′ (excluding solid inertia, solid lines) vs the analytical result F0 for a sphere oscillating in an
unbounded liquid13 (long-dashed lines); short-dashed (blue) curve stands for the real part of F0 upon subtracting the pseudo-Stokes drag term
(−6π) in eq 21.
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suspension, carefully dried under a controlled humidity, and
was imaged by AFM under ambient air conditions. The
particle surface number density was determined by a direct
counting of over a few equally sized areas randomly chosen
over the sensor with a total number of particles of about 1000.
The AFM particle areal mass density was calculated as mñ,
where m is the single particle mass.
Particle deposition kinetics in the QCM cell was

theoretically evaluated in terms of the hybrid convective-
diffusion and random sequential adsorption approach using as
the AFM-derived real particle coverage as a control.35

Further details of the experimental procedures, the relevant
physicochemical characteristics of the particles, and the
theoretical modeling are provided in the Supporting
Information.

■ RESULTS AND DISCUSSION
The numerical (FEM) results for the real and imaginary parts
of the excess shear force due to an adsorbed particle at contact
(h = a) are presented in Figure 3a−d (solid curves). The fluid-
mediated contribution Fa in eq 8 is depicted in Figure 3a vs
a/δ together with the linear small-λ asymptotes Fa(1) (short-
dashed lines) and the prediction of the distant-particle theory
(long-dashed, red curves) that assumes h ≫ max(a, δ), while
the ratio a/δ is not constrained25
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Here, Iν(λ) and Kν(λ) are the modified Bessel functions of the
first and second kind, respectively. It can be readily seen that
the numerical results show excellent agreement with Fa(1) at low
values of a/δ. The agreement with the theoretical prediction in
eq 20 is only qualitative. Recall that starting from relatively
small separations, h ≳ 1.5a, a surprisingly close agreement
between the numerical results and eq 20 was found,25 while at
contact (h = a), the theory considerably underestimates the
fluid-mediated contribution, Fa (i.e., both the real and the
imaginary parts; see red long-dashed curves in Figure 3a).
Another observation is that the relative weight of the analytical
(the last two) terms in eq 8 to Fa is small for all values of a/δ
(see the blue curves in Figure 3a).
Notice that Re[Fa] > 0, while Im[Fa] < 0, which implies

positive frequency shift (which is typically associated with
nonhydrodynamic effects, such as contact viscoelasticity), and
ΔΓ < 0, indicating reduced dissipation. The reason for
seemingly unorthodox result is that the adsorbed particle
excludes a fluid volume above the resonator and at the same
time shields the resonator from the shear wave that would
otherwise persist in its absence. One might expect that adding
the contact force would flip the signs of the net excess force
(see below).
The numerical results for the hydrodynamic part of the

contact force (i.e., excluding solid inertia), Fc′ (the sum of the
first two terms in eq 10), are depicted in Figure 3b vs a/δ
(solid curves). The linear small-λ asymptotes Fc(1) (short-
dashed lines) approximate Fc′ very well up to a/δ ≈ 1. The
long-dashed (blue) line stands for the net contact force Fc in
eq 10 for a neutrally buoyant particle with ξ = 4π/3. It can be

readily seen that for a ≳ δ, the excess force is dominated by the
contact force, as Fc ≫ Fa, while for a/δ ≲ 0.5, the two terms
are comparable. Moreover, since Fa(1) = −Fc(1), their
contributions compensate each other and the net effect is

( )2| | . This notion is illustrated in Figure 3c, where we plot
Fa, Fc (for neutrally buoyant particle, ξ = 4π/3) and the
resulting net excess force F vs a/δ < 0.5. The small-λ linear
asymptotes are shown as short dashed lines. The exact
cancelation of the fluid-mediated and contact forces at the
leading order in λ result in rather low values of F for small
particles, in particular its real part of ( )3| | , while the
imaginary part is of ( )2| | (see the analysis above). For
example, for 50 nm (a/δ = 0.1) neutrally buoyant particles in
water for the fundamental frequency of f0 = ω/2π = 5 MHz,
giving δ ≈ 252 nm, yields an/( ) .≈ 0.10 0.78i.+ Using
the small-load approximation,2 the shift in oscillation
frequency, Δf, and in its half-bandwidth, ΔΓ (or the dissipation
factor, = f2 / ), can be found from f i =
fi /( )0 q , where the quartz resonator’s shear wave

impedance 8.8 10q
6= × kg/m2s and the oscillation

frequency f nf ,0= where n is the (odd) overtone number.
Assuming the particle number density at the surface of the
resonator n a0.01 2= (i.e., one nanoparticle per 100a2 surface
area), the small-load approximation at the fundamental
frequency f0 yields Δf ≈ −56.0 Hz and ΔΓ ≈ 7.4 Hz.
In Figure 3d, we compare the hydrodynamic part of the net

excess shear force, F′ (excluding the solid inertia term, solid
curves) vs the classical result for the force exerted on an rigid
sphere oscillating with velocity u xv e t

0 0
i= in an unbounded

viscous liquid, quiescent at infinity (long-dashed lines). This
force can be written in the dimensionless form (scaled with
ηav0) as (see ref 13)

F a a a
6 1 6 i 1
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It was previously proposed,22 that for large enough particles
(a ≫ δ), the hydrodynamic contribution to the impedance can
be closely approximated by F0 as most of the particle surface
oscillates in almost quiescent liquid located above the
penetration depth δ. It can be seen that the agreement
between numerical result for Im[F′] (dashed line) and the
second (“added mass”) term in eq 21 is quite close and the
relative error (which increases with a/δ) is ∼16% for a/δ = 4.
For the same value of a/δ, the real part, Re[F′], deviates from
the first (“drag”) term in eq 21 by ∼22%, while this error
becomes larger for smaller particles: it is already ∼68% for
a/δ = 1. It appears that subtracting the zero-frequency pseudo-
Stokes drag term −6π from Re[F0] yields much closer
agreement (see the short-dashed line in Figure 3d). The
rationale behind subtraction of the zero-frequency (pseudo-
Stokes) drag term is as follows. In the small-particle (or,
alternatively, low-frequency) limit, a ≪ δ, the flow disturbance
is equivalent to that of the wall-bounded shear flow, and the
net contribution of the hydrodynamics to the excess shear
force is small, ∼(a/δ)2. The pseudo-Stokes term corresponds
to a zero-frequency limit of the force exerted on a particle
oscillating in an unbounded fluid, and it is (1). Thus, clearly
the pseudo-Stokes term is irrelevant for small adsorbates. In
the opposite limit, a ≫ δ, the pseudo-Stokes term is small in
comparison to other terms in eq 21, and its omission should
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not significantly alter the result. Apparently, subtracting the
pseudo-Stokes term in eq 21 greatly improves the accuracy of
the ad hoc model22 all across the scale of a/δ.
The dimensionless frequency shift, f f/( ),0 and the half

bandwidth shift, f/( )0 vs a/δ, for neutrally buoyant
particles (i.e., ρs/ρ = 1) are shown as double-log plot in Figure
4a (the black solid and dashed curves, respectively). Here,

an/ q= is the dimensionless (viscous-to-solid) impe-
dance ratio. For example, for 50 nm diameter particles in water
and particle areal density n a0.01 2= , we find that α =
4.55 × 10−5. Both shifts are monotonically increasing functions
of a/δ, while for small particles, eq 19 yields

f
f

a2
(40.159 )

0

2

+ i
k
jjj y

{
zzz

(22)

which for neutrally buoyant particles (ξ = 4π/3) gives
f f/( )0 ≈ 28.23(a/δ)2 (see the short-dashed line in Figure

4a). Note that for small adsorbates, −Δf ∝ (a/δ)2 ∼ ω and
ΔΓ ∝ (a/δ)3 ∼ ω3/2. At higher values of a/δ ≳ 0.2, the
crossover to a sublinear dependence Δf ∼ ω0.82 takes place,
and similarly, the crossover to ΔΓ ∼ ω0.64 occurs for a/δ ≳ 0.5.
As a result, the acoustic ratio, ΔΓ/(−Δf), shows a non-
monotonic dependence on a/δ, reaching the maximum value
at a/δ ≈ 0.9 (see Figure 4b).
The theoretical results are in excellent agreement with the

experimental results (full color symbols) and the results of
direct numerical simulations by FreqD-LBM (empty symbols)
over a wide range of particle sizes and frequencies. Notice that
for a/δ > 1, the stiff contact between larger 205 nm adsorbates
(blue symbols) and the resonator cannot be formed due to
high particle inertia and elevated viscous component of the
contact force, resulting in substantial deviation from the
theory. The scaled frequency shift due to the solid inertia alone
by the Sauerbrey eq 11, f f/( )S 0 = (8/3)(ρs/ρ)(a/δ)2, for
neutrally buoyant particles is depicted for comparison (solid
gray line). It can be readily seen that this equation significantly
underestimates the mass of discrete adsorbates in liquids. In
particular, in the small-particle limit, a/δ → 0, we found that

Δf/Δf S ≈ 10.8, rendering the standard Sauerbrey model highly
inaccurate.
The theoretical prediction of the dimensionless acoustic

ratio, ΔΓ/(−Δf), being independent of the surface coverage ñ
is depicted vs a/δ for neutrally buoyant particles in Figure 4b
(solid line) together with the experimental data (full diamonds,
the same as in Figure 4a) and FreqD-LBM simulations results
(empty diamonds). There is a close agreement between the
theoretical prediction, experiment, and simulations. For larger
205 nm particles, the agreement can only be observed at low
overtones (n = 1, 3) due to the greater effect of the inertia and
the viscous force acting on the particle, as explained above.
Notice that for adsorbed particles with stiff contact, the theory
predicts that the acoustic ratio has a maximum; e.g., for
neutrally buoyant particles, it is ΔΓ/(−Δf) ≈ 0.38 at
a/δ ≈ 0.9. Heavier particles are expected to yield lower values
of the acoustic ratio at the maximum as the inertial
(Sauerbrey) term −λ2ξ in eq 10 contributes solely to the
imaginary part of F, increasing the (negative) frequency shift,
(−Δf), while ΔΓ remains unchanged. For instance, for silica
nanoparticles suspended in ethanol36 (ρs/ρ = 2.44, dashed line
in Figure 4b), we find ΔΓ/(−Δf) ≈ 0.28 at a/δ ≈ 0.7.
Finally, the real and imaginary parts of the contact torque

Lc/ηa2v0 (with respect to the particle center at z = h in eq 14)
are depicted vs a/δ in Figure 5. The small-λ asymptotic (short-
dashed lines) shows excellent agreement with the numerical
results (black solid and gray long-dashed curves).
Notice that the torque Lc(c) with respect to the point of

contact in eq 15 would be much higher owing to the large
contact force, as aF L .c c| | | | The viscous torque exerted on
the discrete adsorbates is relevant toward the prospective
investigation of the competition between hydrodynamic and
adhesive forces controlling the contact dynamics in a more
general formulation, where a priori assumption of the stiff
contact is relaxed.

■ CONCLUSIONS AND PERSPECTIVES
In the present paper, we dissect the role of hydrodynamics in
the QCM-D frequency response due to discrete adsorbates in
liquids. Under the assumption of low surface coverage, we

Figure 4. (a) Dimensionless frequency shift f f/( )0 (solid black curve) and the half-bandwidth f/( )0 (long-dashed curve) shift due to
adsorbed neutrally buoyant (ρs/ρ = 1) adsorbates vs a/δ (log−log plot); the short-dashed (red) lines show the asymptotic behavior at a/δ ≪ 1;
and the solid (gray) line is the Sauerbrey frequency shift, f f/( ),S 0 for comparison. Empty symbols (circles and squares) are the results of
FreqD-LBM simulations for 20 nm (black), 40 nm (red), and 80 nm (blue) particles. Full symbols are the experimental results for 26 nm (black)
and 73 nm (red) amidine polystyrene particles adsorbing onto the SiO2 sensor and 205 nm sulfonate polystyrene particles (blue) adsorbing onto
the Au sensor. Different values of a/δ for the same color correspond to different overtones, n = 1−11. (b) Acoustic ratio ΔΓ/(−Δf) vs a/δ for
neutrally buoyant particles (solid line); full symbols are the experimental results and empty symbols stand for the FreqD-LBM simulation results;
and the dashed line is the theoretical prediction for heavy particles with ρs/ρ = 2.44 shown for comparison.
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theoretically study the excess shear force (or the complex
impedance) exerted on the resonator for the analytically
tractable case of a stiff contact between a single adsorbed rigid
particle and the resonator. Using the reciprocal theorem for
unsteady Stokes flows, we consider two separate contributions
to the impedance: (i) due to the flow disturbance by the
particle and (ii) due to the viscous force exerted on the particle
and transmitted to the sensor via contact. The contribution (i)
is fluid-mediated and does not require physical contact. For an
arbitrary particle size or frequency (i.e., arbitrary value of a/δ),
the resulting hydrodynamic problem is solved numerically,
while in the small-particle limit, a/δ ≪ 1, we construct the
solution as an asymptotic expansion in powers of
λ = (1 − i)(a/δ). The asymptotic solution shows that for
small particles, a/δ ≪ 1, the contribution (i) to the impedance
at the leading (linear) approximation in λ is compensated
exactly by the contribution (ii), such that the net impact of the
hydrodynamics to the impedance reduces to ( )2| | . There-
fore, for small values of a/δ, the resulting frequency shift is
shown to scale as −Δf ∼ (a/δ)2 ∝ ω and half-bandwidth shift,
ΔΓ ∼ (a/δ)3 ∝ ω3/2. The theoretical predictions for the
frequency and half-bandwidth shifts and the acoustic ratio,
ΔΓ/(−Δf), show excellent agreement with the experimental
results and the numerical (FreqD-LBM) simulations in a wide
range of particle sizes and frequencies. Our theoretical results
can be applied for precise analysis of the QCM-D kinetic data,
providing essential information, such as the adhesion strength,
on bioparticle interaction with abiotic interfaces in liquids.
It is demonstrated that for small particles, the hydrodynamic

forces dominate over the inertial forces, and, as a result,
commonly used Sauerbrey eq 11, which evaluates the
frequency shift Δf S based solely on the inertia of the
adsorbates (i.e., entirely neglecting the hydrodynamics),
significantly underestimates their mass. In particular, we
found that for small neutrally buoyant adsorbates, the apparent
mass derived from QCM-D, independent of the overtone, is
about 10 times the Sauerbrey (inertial) mass, as Δf/Δf S ≈ 10.8
in the limit a/δ ≪ 1. We would also like to emphasis that the
early hypothesis of the “trapped liquid” (e.g., refs 10−12) is
fundamentally wrong as the source of discrepancy is not of a
static, but of a hydrodynamic origin, i.e., due to nontrivial flow
disturbance caused by the adsorbate.
Let us briefly address the assumptions used in the present

study. The revised analysis of ref 29 demonstrates30 that in the
limit a ≪ δ, the mutual hydrodynamic interaction between
discrete adsorbates is negligible for the surface coverage

n a 7%2= . Ref 21 reports on θ ≲ 5% as the low-
coverage threshold based on the results of IBM simulations,
while the FreqD-LBM simulations used in this work suggest a
slightly lower limit of θ ≲ 3%. All of these estimates are
roughly in accord with each other.
Throughout the paper, we implicitly applied the kinematic

condition of a stiff contact (no “sliding” or “rocking”), while in
practice, the contact stiffness is determined by the competition
between adhesion, viscous, and inertial forces. It can be shown
(see the Supporting Information for details) that the amplitude
of the particle displacement with respect to the resonator scales
as a2 and ω3/2, which is in a qualitative agreement with the
experimental findings, showing the increasing deviation from
the theory upon increasing the particle size or oscillation
frequency (see Figure 4a,b).
We have previously shown that in agreement with the

argument in ref 24, in the limit of vanishing proximity,
ϵ = h/a − 1 → 0, the translation and rotation velocities of a
freely suspended spherical particle to the leading approx-
imation in ϵ tend to these of a rigidly attached particle, i.e.,
V − 1, Ω ∼ | ln ϵ|−1 entirely due to the strong lubrication forces
(see Section V in ref 25). However, the fluid-mediated
contribution to the excess shear force due to a freely suspended
par t i c l e near contac t , tha t can be wr i t ten as
F F V( 1)f a= + + , might be different from the
corresponding contribution due to an adsorbed particle,
Ff ≠ Fa, due to logarithmic dependence of the corresponding
resistance functions, and at ϵ → 0. The analysis of the
QCM reading due to attachment of the particle is beyond the
scope of the present paper and will be considered elsewhere.
The quantitative interpretation of the QCM readings in

liquids is complex, and low-surface coverage of spherical
adsorbates provides the first sensible approximation. While our
numerical (FEM) solution relying on the axial symmetry of the
adsorbates could be readily extended to spheroidal particles
and spherical cavities and caps, the analytical small-particle
approximation only applies to spherical adsorbates. On the
other hand, the numerical FreqD-LBM simulations can be
used to simulate impedance due to discrete adsorbates of an
arbitrary shape and surface coverage.
The idea of using QCM-D as a tool for quantifying

viscoelastic properties of the soft contact between discrete
adsorbates and the functionalized surfaces sounds appealing,
but its implementation could be rather complex. The accurate
account of hydrodynamics in such a case is critical as subtle
differences in particles’ displacement produce large differences
in the impedance, e.g., notice the difference in impedance due
to freely suspended particles near contact (see refs 21 and 25)
and adsorbed particles analyzed here. The soft compliant
contact allows particle motion relative to the resonator
(rocking or sliding14) which is controlled by the competition
between (a priori unknown) adhesive and hydrodynamic
forces, rendering the quantitative analysis of the QCM-D signal
complicated.
In experiments, increasing the size of the discrete adsorbates

and/or oscillation frequency prevent formation of the stiff
adhesive contact due to the augmented effect of the solid
inertia and viscous drag force, suggesting that perhaps accurate
gravimetric measurements of large discrete adsorbates are
possible at lower frequencies. Since the fundamental frequency
of AT cut quartz is inversely proportional to its thickness, it is

Figure 5. Contact torque Lc/ηa2v0 with respect to the particle center
vs a/δ. Solid (black) and long-dashed (gray) curves stand for the
numerical results for the real and the imaginary parts of Lc; the short-
dashed (gray) lines stands for the small-λ asymptotics.
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theoretically possible to build a device with a thicker crystal
operating at lower resonant frequency.
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