Contents lists available at ScienceDirect

Inorganica Chimica Acta

journal homepage: www.elsevier.com/locate/ica

Research paper Anion- and water-facilitated oxidative carbon–carbon bond cleavage and

Josiah G.D. Elsberg^a, Tomasz Borowski^b, Eric W. Reinheimer^c, Lisa M. Berreau^{a,*}

diketonate carboxylation in Cu(II) chlorodiketonate complexes

^a Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT 84322-0300, USA

^b Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Krakow 30-239, Poland

^c Rigaku Americas Corporation, 9009 New Trails Drive, The Woodlands, TX 77381, USA

ARTICLE INFO

Keywords: Copper Oxygen activation Ligand Mechanism Hydrogen bonding

ABSTRACT

The O2-dependent carbon-carbon (C-C) bond cleavage reactions of the mononuclear Cu(II) chlorodiketonate complexes [(6-Ph₂TPA)Cu(PhC(O)CClC(O)Ph)]ClO₄ (1-ClO₄) and [(bpy)Cu(PhC(O)CClC(O)Ph)(ClO₄)] (3-ClO₄) have been further examined in terms of their anion and water dependence. The bpy-ligated Cu(II) chlorodiketonate complex 3-ClO₄ is inherently more reactive with O_2 than the 6-Ph₂TPA-ligated analog 1-ClO₄. Added chloride is needed to facilitate O₂ reactivity for **1-ClO₄** but not for **3-ClO₄** at 25(1) °C. Evaluation of k_{obs} for the reaction of 1-ClO₄ with O₂ under pseudo first-order conditions as a function of the amount of added chloride ion produced saturation type behavior. The bpy-ligated 3-ClO4 exhibits different behavior, with rate enhancement resulting from both the addition of chloride ion and water. Computational studies indicate that the presence of water lowers the barrier for O_2 activation for **3-ClO₄** by ~12 kcal/mol whereas changing the anion from perchlorate to chloride has a smaller effect (lowering of the barrier by \sim 3 kcal/mol). Notably, the effect of water for 3-ClO₄ is of similar magnitude to the barrier-lowering chloride effect found in the O₂ activation pathway for 1-ClO₄. Thus, both systems involve lower energy O₂ activation pathways available, albeit resulting from different ligand effects. Probing the effect of added benzoate anion, it was found that the chloro substituent in the diketonate moiety of 1-ClO₄ and 3-ClO₄ will undergo displacement upon treatment of each complex with tetrabutyl ammonium benzoate to give Cu(II) benzovloxydiketonate complexes (4 and 5). Complexes 4 and 5 exhibit slow O₂-dependent C—C cleavage in the presence of added chloride ion. These results are discussed in the context of the chemistry identified for various divalent metal chlorodiketonate complexes, which have relevance to catalytic systems and metalloenzymes that mediate O2-dependent C-C cleavage within diketonate substrates.

1. Introduction

Oxidative carbon–carbon (C—C) bond cleavage reactions facilitated by copper catalysts and involving O_2 as the terminal oxidant are of current interest for synthetic applications, including for reactions involving β -diketone substrates [1–5]. However, the reaction pathways by which cleavage processes of this type occur have not been extensively investigated [5–14]. It is noteworthy that little is currently known regarding how anions or water associated with the copper catalyst may influence O_2 activation reactivity. While some research has been done to explore the effects of halides on transition metal catalysis, only recently has there been examination of anion effects in copper-containing systems [15–18]. Other factors that influence O_2 activation, such as hydrogen bonding, also remain of current interest [19]. O_2 -dependent C—C cleavage involving diketonate substrates is also important as such reactivity is relevant to the reaction catalyzed by diketone dioxygenase (Dke1) enzymes [20].

We have previously reported studies of the effect of added chloride anion on the O₂-dependent C—C bond cleavage reaction of the chlorodiketonate ligand in [(6-Ph₂TPA)Cu(PhC(O)CClC(O)Ph)]ClO₄ (1-ClO₄) (6-Ph₂TPA = *N*,*N*-bis((6-phenyl-2-pyridyl)methyl)-*N*-((2-pyridyl) methyl)amine [21,22]. When exposed to O₂, **1-ClO₄** undergoes reaction to form a Cu(II) chloride complex (**2**, Scheme 1(a)) and organic products resulting from C—C cleavage, including benzoic acid, benzil, benzoic anhydride, diphenylpropanetrione, and a CO₂/CO (0:80:0.05 eq) mixture. Strong evidence supports the involvement of diphenylpropanetrione as an intermediate in this reaction prior to C—C bond cleavage [22]. In our prior work, monitoring of the π - π * chlorodiketonate band in

https://doi.org/10.1016/j.ica.2024.122203

Received 10 January 2024; Received in revised form 8 June 2024; Accepted 11 June 2024 Available online 19 June 2024 0020-1693/© 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

^{*} Corresponding author. *E-mail address:* lisa.berreau@usu.edu (L.M. Berreau).

Scheme 1. a) O₂-dependent C—C bond cleavage reactivity of 1-ClO₄. b) Proposed structure of chloro-adduct 1-Cl. c) Proposed Cu-benzoato adduct 1-OBz. d) Cu(II) benzoyloxydiketonato complex 4.

Scheme 2. a) O₂-dependent aliphatic C—C bond cleavage reactivity of **3-ClO₄**. b) Proposed structure of chloride-adduct **3-Cl**. c) Proposed H₂O adduct **3-H₂O**. d) Cu (II) benzoyloxydiketonato complex.

the reaction of **1-ClO₄** with O₂ under pseudo-first order conditions revealed a slow induction phase followed by a rapid first-order decay process. Notably, addition of a catalytic amount of chloride anion removed the induction phase, providing evidence for a lowering of the activation barrier for reaction with O₂. Computational studies of this process provided evidence that chloride coordination to the Cu(II) center lowered the barrier for O₂ activation by ~9 kcal/mol (from ~26 to 17 kcal/mol) [22]. Evidence from chloride binding studies with **1-ClO₄** suggested the formation of an adduct (**1-Cl**, Scheme 1(b)) with a binding constant of log *K* = 1.84(3) and Rose-Drago plots implying a two-state equilibrium involving **1-ClO₄** and **1-Cl** in the system. Use of ¹⁸O₂ in the reaction provided evidence for the incorporation of labeled oxygen atoms in the organic products [21].

As shown in Scheme 1(b) the optimized geometry of 1-Cl from DFT calculations is suggested to have a square-pyramidal Cu(II) center with only the tertiary nitrogen and unsubstituted pyridyl donor from the 6-Ph₂TPA chelate ligand coordinating to the Cu(II) center. To evaluate the effect of a bidentate nitrogen donor supporting chelate ligand, a 2,2′-bipyridine (bpy)-ligated Cu(II) chlorodiketonate complex (3-ClO₄, Scheme 2(a)) was synthesized and found to have a similar square-pyramidal geometry via X-ray crystallography, with a perchlorate

anion coordinated in the axial position [22]. In the presence of O_2 , **3**-**ClO**₄ exhibited the same type of oxidative cleavage reactivity as **1-ClO**₄ (Scheme 2(a)), including an induction phase followed by a first-order decay. Like **1**, addition of chloride anion (via introduction of CH₃CN aliquots of [Bu₄N]Cl) to CH₃CN solutions of **3-ClO**₄ resulted in the loss of the induction phase indicating a lowering of the barrier for O_2 activation. Chloride binding studies again provided evidence for a two-state equilibrium involving a possible chloride adduct (log K = 4.1(7); **3-Cl**, Scheme 2(b)). The larger log *K* value versus that found for **1-Cl** implies a stronger binding affinity for the anion in **3-Cl**.

Benzoate/benzoic acid is generated in the O₂-dependent C—C bond cleavage reaction of the chlorodiketonate ligand in **1-ClO₄** and **3-ClO₄**. To explore potential effects of the benzoate anion in the reaction, Saraf, *et al.* also examined the effect of added benzoate anion on the O₂ reactivity of **1-ClO₄** and **3-ClO₄** [22]. Interestingly, monitoring the π - π * diketonate absorption feature of each complex as a function of time indicated a longer induction phase versus the reaction having no added anion. In fact, in the case of **1**, increasing the amount of benzoate produced increasingly long induction phases. Axial benzoate coordination to the Cu(II) center similar to chloride in **1-Cl**, with log *K* = 2.81(2) for **1-OBz** (Scheme 1(c)) was proposed based on anion binding studies and

DFT calculations [22]. The computational studies suggested that benzoato coordination to **1** should lower the O_2 activation barrier similar to that of chloride. With this being the case, the difference in the respective effects of added chloride and benzoate anions on the induction phase remained to be fully understood. It is noteworthy that addition of chloride anion can "rescue" the benzoate-containing reaction for **1**, suggesting that the chloride-containing reaction provides the overall lowest energy pathway for O_2 -dependent C—C cleavage [22].

The new results reported herein describe recent discoveries that we have made regarding the O₂ reactivity of **1-ClO₄**. Specifically, we have found that the previously reported chloride dependent reactivity of 1-ClO₄ depends on how the complex is isolated [21,22]. In the current work we show that 1-ClO₄ produced following multiple recrystallizations is unreactive with O2 in absence of added chloride ion. This indicates that prior isolated precipitates of **1-ClO₄** that were used in the studies reported in references 22 and 23, which showed O₂ reactivity following an initial lag phase, likely contained chloride contaminants that may have resulted from retro-Claisen decomposition of the chlorodiketonate ligand [23]. Additionally, we further examined the products generated in reactions of 1-ClO₄ and 3-ClO₄ with Bu₄NOBz under O₂ [22]. We previously reported that addition of benzoate resulted in the formation of adducts (1-OBz and 3-OBz) that lowered the barrier for reaction with O2. New ESI-MS studies now provide evidence for competing benzoate substitution reactivity involving the chlorodiketonate ligand to produce Cu(II) benzoyloxydiketonate species (4 and 5) under O2. This substitution reactivity is more prevalent for 3-ClO₄ than 1-ClO₄ under O₂, likely due to steric differences around the Cu(II) center. Under N2, both 1-ClO4 and 3-ClO4 undergo substitution of the diketonate chloride substituent when treated with Bu₄NOBz to give 4 and 5. The 6-Ph₂TPA-ligated Cu(II) benzoyloxydiketonate complex (4, Scheme 1) is stable with respect to O₂ whereas the bpy-ligated analog 5 shows slow O2-dependent C-C cleavage in the presence of added chloride ion. Overall, the studies presented herein provide further insight into the novel anion-induced reactivity of 1-ClO₄ and 3-ClO₄ with O2. Studies of the reactivity of these complexes are relevant toward understanding how anions and other molecules (e.g., water) can play a crucial role in Cu(II)-mediated oxidative processes involving O2 activation.

2. Experimental

2.1. General methods

All solvents and reagents were purchased from commercial sources and were used without prior purification unless otherwise indicated. Solvents were dried following a previously published procedure and distilled prior to use [24]. *N*,*N*-bis((6-phenyl-2-pyridyl)methyl)-*N*-((2pyridyl)methyl)amine (6-Ph₂TPA) and 2-chloro-1,3-diphenyl-1,3-propanedione were prepared according to literature procedures [25,26]. All manipulations involving the preparation and handling of the Cu(II) complexes were performed in an MBraun Unilab glovebox under an *N*₂ atmosphere unless otherwise indicated. Complex **3-ClO**₄ was prepared and isolated as previously reported [22].

2.2. Physical methods

¹H and ¹³C{¹H} NMR spectra were collected using a Bruker Advance III HD Ascend-500 spectrometer. Chemical shifts (ppm) are reported relative to the residual solvent peak in CD₃CN (¹H NMR: 1.94 ppm, quintet) or CDCl₃ (¹H NMR: 7.26 ppm, singlet). FTIR spectra were collected as dilute KBr (oven dried) pellets using a Shimadzu FTIR-8400 spectrometer. UV–vis data were collected on either a Hewlett-Packard 8453A diode array spectrometer or Cary 50 spectrometer. ESI mass spectral data were collected using a Shimadzu LCMS-2020. Elemental analyses were performed by Robertson Microlit Laboratories (Ledgewood, N.J.) or Atlantic Microlab (Norcross, GA). *Caution!* Perchlorate compounds containing organic ligands are potentially explosive. These materials should be handled with care and in small quantities [27].

2.3. Updated synthesis and isolation procedure for **1-ClO₄** incorporating multiple recrystallizations

Under an inert atmosphere at ~30 °C, Cu(ClO₄)₂·6H₂O (0.135 mmol) was dissolved in CH₃CN (~3 mL) and the solution was added to solid 6-Ph₂TPA (0.135 mmol). The resulting deep blue solution was stirred for 30 min. In a separate container, 2-chloro-1,3-diphenyl-1,3-propanedione (0.135 mmol) was dissolved in Et₂O and added to solid lithium bis(trimethylsilyl)amide (0.135 mmol), becoming a turbid yellow solution that was stirred for five minutes. The two solutions were then combined and stirred for a minimum of two hours, resulting in the formation of a clear green solution. The solvent was removed under reduced pressure and the residual solid was then dissolved in CH₂Cl₂. A precipitate that remained was removed by passing the solution through a Celite plug. The filtrate was reduced to ~ 1 mL under reduced pressure. Green needle crystals were grown by diffusion of Et₂O into the filtrate. After isolation, the crystals were recrystallized a second time from CH₂Cl₂/Et₂O (52 mg, 45 %). Anal calc. for C₄₅H₃₆CuN₄O₆Cl₂·0.1CH₂Cl₂: C, 62.14; H, 4.19; N, 6.43. Found: C, 61.76; H, 4.31; 6.45. Full characterization data for 1-ClO₄ (UV-vis, FTIR, mass spectrometry, EPR, X-ray crystallography) has been previously reported [21].

2.4. Kinetic studies of the O2 reactivity of 1-ClO4 and 3-ClO4

A CH₃CN stock solution of **1-ClO₄** or **3-ClO₄** was made in an inertatmosphere glovebox. An aliquot from this solution was added to a 1 mm quartz cuvette having a long neck and a Teflon stopcock. After closing the stopcock, the cuvette was taken out of the glovebox and filled to a total volume of ~600 µL with O₂-purged CH₃CN. After mixing, the headspace of the cell was twice purged with O₂ for 30 s, flipping the sealed cuvette a few times after each purge. To introduce chloride anion to the solution, an aliquot from a stock solution of tetrabutylammonium chloride in CH₃CN was added and the solution was mixed by flipping the sealed cuvette over 2–3 times. Each reaction mixture was monitored by UV–vis (π - π * band for chlorodiketonate ligand of **1-ClO₄** and **3-ClO₄**) as a function of time at ~25 °C. The amount of chloride anion added was 0.25, 0.50, 1.00 or 2.00 equivalents. Experiments involving tetrabutylammonium benzoate were performed in a similar manner.

2.5. Oxidative C-C cleavage product isolation and identification

A CH₃CN solution of 1-ClO₄ or 3-ClO₄ was made in air at a concentration of 1.75×10^{-3} M. Each solution was then purged with O₂ for one minute. A specific amount of tetrabutylammonium chloride was then added from a stock solution in CH₃CN. Experiments were performed under the following conditions to complement prior studies: (a) $1-ClO_4 + 2 eq Bu_4NCl under O_2$; (b) $3-ClO_4 + 0-2 eq Bu_4NCl$; (c) $1-ClO_4$ + 0–2 eq Bu₄NOBz under O₂ or N₂; (d) 3-ClO₄ + 0–2 eq Bu₄NOBz under O2 or N2. Each sample was subsequently stirred for 16 h. Experiments containing Bu₄NCl changed from green to turbid light blue within 10 min. The mixture containing 3-ClO₄ with no added Bu₄NCl slowly became clear light blue overnight. After stirring was completed, the solvent was removed under reduced pressure. CH2Cl2 (5 mL) and HCl (5 mL, 1 M) were then added to the remaining residue and the mixture was stirred for one hour. Each mixture was transferred to a separatory funnel, and the organic layer was collected. The water layer was subsequently washed with additional aliquots of CH₂Cl₂, and the organic extracts were combined. The organic layer was washed again with aqueous HCl (5 mL, 1 M), followed by a wash with saturated brine solution. The organic layer was subsequently dried over sodium sulfate, filtered, and the filtrate brought to dryness. ¹H NMR data were collected and compared to known standards.

2.6. Treatment of the lithium salt of 2-chloro-1,3-diphenyl-1,3-propanedione with tetrabutylammonium benzoate

Lithium bis(trimethylsilyl) amide (0.012 mmol) was dissolved in Et_2O (~2 mL) and added to a vial containing 2-chloro-1,3-diphenyl-1,3propanedione (0.012 mmol). The resulting mixture was stirred for about five minutes, during which time it became yellow in color. The solvent was removed under reduced pressure, and the residual solid was dissolved in CH₃CN (5 mL). This solution was added to solid tetrabutylammonium benzoate (0.012 mmol). The resulting mixture was stirred for 24 h at ambient temperature. Removal of the solvent under reduced pressure followed by a work-up identical to the reaction mixtures of 1- CIO_4 and 3- CIO_4 in the presence of added anion outlined above gave a solid product that was evaluated by ¹H NMR.

2.7. Synthesis of 2-(benzoyloxy)-1,3-diphenyl-1,3-propanedione

The following procedure was adapted from a previously reported synthesis [28]. 2-bromo-1,3-diphenyl-1,3-propanedione [29] (0.993 mmol) was dissolved in DMSO (30 mL). Addition of sodium benzoate (9.93 mmol) produced a vellow solution which was subsequently stirred for 30 min in air. Addition of H₂O (30 ml) resulted in the formation of a white precipitate. The mixed aqueous/organic solution was transferred to a separatory funnel and extracted with Et₂O (2 x 30 mL). The combined Et₂O extracts were then washed three times with an equal volume of water. The organic solution was then dried over Na₂SO₄, filtered, and the solvent was removed by rotary evaporation. The remaining crude, oily solid was dissolved in a minimal amount of hot methanol and placed in the freezer (-15 °C) overnight. A white solid that deposited was collected by filtration (156 mg, 46 %). mp 98–99 °C. ¹H NMR (CDCl₃) δ (ppm): 8.13 (d, J = 7.4 Hz, 4H), 8.08 (d, J = 7.2 Hz, 2H), 7.60 (m, 3H), 7.49 (t, J = 8.0 Hz, 3H), 7.45 (t, J = 7.8 Hz, 3H), 7.20 (s, 1H). ¹³C{¹H} NMR (CDCl₃) δ (ppm): 191.1 (C=O), 165.0 (C=O), 134.4, 134.3, 133.8, 130.2, 129.64, 129.60, 128.8, 128.7, 80.8 (11 signals expected and observed). FTIR (KBr, cm⁻¹): 1725 ($\nu_{C=0}$), 1690 ($\nu_{C=0}$), 1590, 1400, 1270.

2.8. Synthesis and characterization of [(6-Ph₂TPA)Cu(PhC(O)C(OC(O) Ph)C(O)Ph)]ClO₄ (**4**)

Under an inert atmosphere at \sim 30 °C, Cu(ClO₄)₂·6H₂O (0.135 mmol) was dissolved in CH₃CN (~3 mL) and added to solid 6-Ph₂TPA (0.135 mmol). The resulting deep blue solution was stirred for 30 min. In a separate container, 2-(benzoyloxy)-1,3-diphenyl-1,3-propanedione (0.135 mmol) was combined with lithium bis(trimethylsilyl) amide (0.135 mmol) dissolved in Et_2O (~3 mL) and the resulting mixture was stirred for 5 min, forming a yellow-white murky solution. The two solutions were then combined and stirred for a minimum of 1 h to produce a green solution. The solvent was then removed under reduced pressure and the residual solid was dissolved in CH₂Cl₂. This solution was passed through a celite plug and the filtrate was brought to dryness under vacuum. Crystals suitable for X-ray diffraction were grown by vapor diffusion of Et₂O into a CH₂Cl₂ solution. The solid sample was recrystallized twice to ensure purity. (48 mg, 37 %). Anal. calc. for C₅₂H₄₁ClCuN₄O₈·0.1CH₂Cl₂: C, 65.36; H, 4.34; N, 5.85. Found: C, 65.07; H, 4.40; N, 5.94. ESI-MS: m/z calc. for C₅₂H₄₁CuN₄O₄, 848.2 $[M-ClO_4]^+$; found 848.3 $[M-ClO_4]^+$. UV-vis (CH₃CN) λ_{max} , nm (ϵ , M⁻¹ cm^{-1}): 361 (11004). FT-IR (KBr, cm^{-1}): 1740 ($\nu_{C=0}$), 1570, 1560, 1460, 1360, 1090 (v_{ClO4}), 620 (v_{ClO4}).

2.9. Synthesis and characterization of [(bpy)Cu(PhC(O)C(OC(O)Ph)C (O)Ph)]ClO₄ (5)

Under an inert atmosphere at \sim 30 °C, Cu(ClO₄)₂·6H₂O (0.135 mmol) was dissolved in CH₃CN (\sim 3 mL) and added to solid 2,2'-bipyridine (bpy, 0.135 mmol). The resulting deep blue solution was stirred for 30

min. In a separate container, 2-(benzoyloxy)-1,3-diphenyl-1,3-propanedione (0.135 mmol) was combined with lithium bis(trimethylsilyl) amide (0.135 mmol) dissolved in Et₂O (~3 mL) and the resulting mixture was stirred for 5 min, forming a yellow-white murky solution. The two solutions were then combined and stirred for 1 h, becoming a green turbid solution. The solvent was then removed under reduced pressure. The remaining solid was dissolved in CH₃CN (~1 mL). Excess Et₂O was added to the solution which induced the precipitation of a green solid. The filtrate was decanted and the solid was washed with fresh Et₂O. The solid was dried under vacuum. Crystals of 5 suitable for X-ray diffraction were grown by diffusion of Et₂O into a CH₃CN solution containing a few drops of CH2Cl2. (28 mg, 31 %). Anal. calc. for C32H23ClCuN2O8.0.25CH2Cl2: C, 56.91; H, 3.47; N, 4.12. Found: C, 56.65; H, 3.46; N, 4.10. ESI-MS: m/z calc. for C32H23CuN2O4, 562.1 $[M-ClO_4]^+$; found 562.2 $[M-ClO_4]^+$. UV-vis (CH₃CN) λ_{max} , nm (ϵ , M⁻¹ cm⁻¹): 354 (14242). FT-IR (KBr, cm⁻¹): 1730($\nu_{C=0}$), 1560, 1460, 1340, $1110(\nu_{ClO4}), 630(\nu_{ClO4}).$

2.10. X-ray crystallography

The structure of 4 was determined at the University of Montana. A crystal was mounted on a glass fiber using viscous oil and transferred to a Bruker D8 Venture using MoK_{α} radiation ($\lambda = 0.71073$ Å) for data collection at 100 K. Data were corrected for absorption using the SADABS [30] area detector absorption correction program. Using Olex2 [31], the structure was solved with the SHELXT [32] structure solution program using direct methods and refined with the SHELXL [32] refinement package using least squares minimization. All non-hydrogen atoms were refined with anisotropic thermal parameters. All hydrogen atoms were placed in geometrically calculated positions and refined using a riding model. Isotropic thermal parameters of the placed hydrogen atoms were fixed to 1.2 times the U value (1.5 times for methyl groups) of the atoms to which they are linked. The structure of 4 was found to contain severely disordered diethyl ether solvent molecules within voids in the lattice. Attempts at modeling this solvent were not able to produce a suitable model. The SQUEEZE [33] routine within PLATON [34] was used to account for the residual, diffuse electron density and the model was refined against these data. This analysis corrected for a total of 89 electrons per unit cell. This value is near the number required to account for two diethyl ether molecules (84 electrons). Calculations and refinements were carried out using APEX3 [35], SHELXTL [36], Olex2 [31], and PLATON [34].

The structure of 5 was determined at Utah State University. A single crystal was mounted on a glass fiber loop using viscous oil and transferred to a Rigaku XtaLAB Mini II Diffractometer using MoK α (λ = 0.71073 Å) radiation for data collection at 100 K. Data were corrected using a Gaussian grid (numerical integration), with a 0.5 mm 1D horizontal Gaussian beam correction for the graphite monochromator. Using Olex2 [31], the structure of 5 was solved using the SHELXT [32] structure solution program using direct methods and refined with the SHELXL [32] refinement package using least square minimization. All non-hydrogen atoms were refined with anisotropic thermal parameters. Hydrogen atoms were placed in geometrically calculated positions and refined using a riding model. Isotropic thermal parameters of all hydrogen atoms were fixed to 1.2 times the U value (1.5 times for methyl groups) of the atoms to which they are linked. Calculations and refinement of structures were carried out using CrysAlisPro [37], SHELXL [32], and Olex2 [31] software.

X-ray structural data (CIF) for **4** and **5** is available from the Cambridge Crystallographic Data Centre by email (<u>deposit@ccdc.</u>cam.ac.uk; CCDC 2310385 and 2311746).

2.11. EPR spectroscopy

Low temperature X-band EPR spectra of **4** and **5** were acquired on a Bruker EMX EPR spectrometer equipped with an OxfordITC503 liquid

Fig. 1. a) Plot of absorbance (362 nm) versus time for the reaction of crystalline 1-ClO₄ (9.6 x 10^{-4} M) with O₂ in the absence and presence of varying amounts of chloride anion at 25 °C in dry CH₃CN. b) Plot of [Cl⁻] versus the average k_{obs} for 1-ClO₄. The saturation plot was fit to the equation shown.

Table 1

Length of the induction phase (in seconds) for the reactions of $1\text{-}ClO_4$ and $3\text{-}ClO_4$ with O_2 in the presence of varying amounts of added chloride anion at 25 °C.

Complex	$0.00 \ eq \ Cl^-$	$0.25 \ eq \ Cl^-$	$0.50 \ eq \ Cl^-$	$1.00 \ eq \ Cl^-$	$2.00 \ eq \ Cl^-$
1-ClO ₄	NR	440	450	130	100
3-ClO ₄	7700	330	50	50	0

helium cryostat. The spectra were collected at 12 K on samples that were \sim 0.5 mM in 1:1 acetonitrile/toluene. Other spectrometer settings: MW = 9.38 GHz (2 mW); time constant/conversion time = 21 ms; modulation amplitude 8 G (100 kHz); receiver gain = 20000; 10 scans.

2.12. DFT computations

All DFT computations were done with the use of Gaussian 16 ver. C.01 suite of programs [38]. The default implicit solvent model, i.e. integral equation formalism model IEFPCM [39], was employed with hardwired parameters for CH₃CN. B3LYP exchange–correlation functional was applied together with the D3 dispersion corrections with

Becke-Johnson damping [40,41]. Two basis sets were used: def2-SVP for geometry optimization and frequency calculation and def2-TZVP for final electronic energy values [42]. The computational model included the cationic portion of the compound and the anion if it was directly coordinated to Cu(II). Models used to study the effect of water also included a single water molecule. The reported energy values are electronic energy computed with the def2-TZVP basis set with the IEFPCM solvent model included.

3. Results

3.1. Reexamination of the influence of chloride anion on the O_{2^-} dependent *C*—*C* bond cleavage reaction of **1-ClO₄**

We have previously published results of studies of the O_2 -dependent C—C bond cleavage reactivity of **1-ClO₄** (Scheme 1) [21,22]. For this compound, kinetic experiments were performed in CH₃CN under pseudo first-order conditions with respect to O_2 . A slow induction phase was followed by rapid first-order decay. Inclusion of a catalytic amount of chloride anion (from Bu₄NCl) was found to eliminate the induction phase through lowering of the barrier associated with O_2 activation

Scheme 3. Proposed equilibrium between 1-ClO₄ and 1-Cl and subsequent irreversible O₂ activation step leading to O₂-dependent C—C bond cleavage.

Fig. 2. a) Plot of absorbance (357 nm) versus time for the reaction of crystalline **3-ClO**₄ (9.8 x 10^{-4} M) with O₂ in dry CH₃CN in the absence and presence of added amounts of chloride anion at 25 °C. b) Plot of [Cl⁻] versus the average k_{obs} for **3-ClO**₄.

[22]. These prior studies of 1-ClO₄ involved use of complex that had been isolated via precipitation from CH₃CN:hexanes mixtures. For the updated studies reported herein, 1-ClO4 was isolated via multiple recrystallizations from Et₂O diffusion into CH₃CN solutions. When CH₃CN solutions prepared from isolated crystals of 1-ClO₄ were reexamined under the same pseudo first-order conditions with respect to O2, no decay was observed up to 14 h at room temperature (Figs. 1(a) and S1). This result indicates that the precipitated samples must have contained trace chloride ion, which may have been generated via oxidative degradation or retro-Claisen type reactivity [23]. Consistent with prior results, when 0.25 equivalents of Bu_4NCl was added to a CH_3CN solution of crystalline 1-ClO₄, reactivity with O₂ was observed (Fig. 1(a)) Increasing the amount of exogenous chloride added (up to two equivalents) resulted in complete loss of the induction phase (Table 1) and an increase in k_{obs} for the pseudo first-order decay portion (Fig. 1(a); Table S1). A plot of the rate of decay as a function of added chloride anion for 1-ClO₄ shows saturation behavior (Fig. 1(b)). The data were fit using a model for equilibrium binding of chloride anion to form 1-Cl, followed by irreversible O2 activation leading to C-C bond cleavage (Schemes 2(b) and 3). From the saturation curve fit, $K_1 \approx 550$ was determined. Based on prior work involving monitoring of *d*-*d* transitions of 1-ClO₄ as a function of the amount of added Cl⁻, we proposed a similar equilibrium between 1-ClO₄ and 1-Cl (Scheme 3), with $K_1 \approx 70$ [22]. Both approaches suggest weak coordination of chloride to the Cu (II) center in 1. However, this coordination is important as the formation of 1-Cl lowers the energy barrier for O2 activation versus 1-ClO4 [21,22]. Following O₂ activation, the reaction involves an irreversible

O—O cleavage leading to a diphenylpropanetrione intermediate and eventually C—C cleavage products [22]. Evaluation of the products by ¹H NMR showed that reaction mixtures containing two equivalents of added chloride yielded the same organic products as previously reported (Scheme 3; Fig. S2) [21,22].

3.2. Chloride dependance of the O_2 -dependent C—C bond cleavage reaction of $3\text{-}ClO_4$

After reexamining the chloride dependence of 1-ClO₄ using crystalline sample, we also reinvestigated the O₂ reactivity of CH₃CN solutions of crystalline 3-ClO₄ [22] as a function of the amount of chloride ion added. Unlike 1-ClO₄, after a long induction phase involving a slow decay, 3-ClO₄ undergoes reaction even in the absence of added chloride ion (Fig. 2(a)). Increasing the amount of added chloride anion reduces and then eliminates the induction phase and increases k_{obs} . Additional Cl⁻ up to two equivalents with respect to the concentration of the 3-ClO₄ produced an increase in k_{obs} suggesting that similar to **1-ClO₄** a chloride adduct may be forming that enables access to a lower energy O₂ activation pathway. It is important to note that the diketonate-derived organic products generated upon treatment of 3-ClO₄ with zero and two equivalents of added chloride anion (Figs. S3 and S4), respectively, are similar to those previously reported for 1-ClO₄ and prior studies of 3-ClO₄. The products observed were benzoic acid, benzoic anhydride, benzil, diphenylpropanetrione, and 2,2-dihydroxy-propanedione (the hydrated form of diphenylpropanetrione).

Notably, the response of k_{obs} to increasing [Cl⁻] for **3-ClO₄** does not

Fig. 3. a) Plot of absorbance vs time (monitored at 357 nm) for the reaction of crystalline **3-ClO**₄ with O₂ in dry CH₃CN in the absence and presence of 0.25 eq of water at 25 °C. b) Drawing of a proposed water adduct **3-H₂O** that may facilitate the O₂ activation process.

Scheme 4. O₂ activation pathways leading to peroxo formation.

exhibit saturation behavior akin to **1-ClO**₄. Instead, a substantial increase in $k_{\rm obs}$ is only evident upon the addition of >0.50 eq Cl⁻ (Fig. 2 (b)). This suggests that the effect of the added Bu₄NCl salt on the activation barrier is different than that found for **1-ClO**₄. Addition of more than two equivalents of chloride anion increases the rate further.

3.3. Evaluation of the effect of water in Bu_4NCl on the O_2 reactivity of 1-ClO₄ and 3-ClO₄

¹H NMR (Fig. S5) and IR analysis (Fig. S6) of the [Bu₄N]Cl salt used to deliver chloride in the experiments outlined above provided evidence that ~0.5 eq of water is present per formula unit. With this being the case, we also examined the effect of added water on the O₂ reactivity of **1-ClO₄** and **3-ClO₄** in the absence of added chloride anion. While **1-ClO₄** shows no change in reactivity with added water, the induction phase for **3-ClO₄** is reduced in the presence of 0.25 eq of water (Fig. 3(a)). These preliminary studies suggested that the presence of water may facilitate lowering of the O₂ activation barrier possibly via structures such as **3-**H₂O (Fig. 3(b)).

3.4. Probing the effect of H_2O on the O_2 activation reactivity of **3-ClO₄** using computations

Density functional theory (DFT) calculations were performed to gain insight into the O₂ activation pathway and C—C cleavage in **3-ClO₄** and **3-H₂O** in the absence and presence of added chloride ion (**3-Cl** or **3-Cl-H₂O**) or coordinated solvent (**3-CH₃CN** and **3-H₂O-CH₃CN**). The DFT geometry optimized structures of these complexes are shown in Fig. S7. A detailed comparison of the bond distances involving the Cu(II) center in the X-ray structure of **3-ClO₄** versus the DFT geometry-optimized structure of this compound is given in Table S2. Overall, the bond distances and geometry (distorted square pyramidal; **3-ClO₄** (Xray): $\tau_5 =$

Scheme 5. Reaction pathways leading to peroxo formation wherein the axial perchlorate is replaced by solvent or chloride anion.

Fig. 4. DFT generated structures showing hydrogen bonding interactions between H₂O and O₂ in a) **3-H₂O-O₂**; b) **3-H₂O-O₂-P₁**; and c) **3-Cl-H₂O-P₁**.

0.027; **3-ClO₄** (DFT): 0.002)) [43] of the Cu(II) center in **3-ClO₄** determined by X-ray crystallography are well replicated by the DFT geometry-optimized structure, albeit with a \sim 0.1 Å longer Cu-OClO₃ interaction in the former.

The geometry optimized structure of **3-H₂O** contains a Cu(II) center that is distorted (elongated) octahedral. The Cu-OH₂ distance in geometry-optimized **3-H₂O** (2.426 Å) is slightly longer than that found for the axial positions in the $[Cu(H_2O)_6]^{2+}$ cation by X-ray crystallography and EXAFS [44]. Replacing the axial perchlorate anion in **3** with chloride (**3-Cl**) or solvent (**3-CH₃CN**) produces only slight changes in the bipyridine and diketonate Cu—O and Cu—N bond distances and geometry at the Cu(II) center (Fig. S7 and Table S2). Addition of water molecules in **3-Cl-H₂O** and **3-H₂O-CH₃CN** similarly produces little change in the chelate bonding interactions to the Cu(II) center. Notably, the coordinated water molecule in **3-Cl-H₂O** is only very weakly interacting (~2.7 Å) whereas the water molecule is more strongly interacting (~2.4 Å) in **3-H₂O** and **3-H₂O-CH₃CN**.

The rate determining step in the oxidative C—C bond cleavage reaction of **1-ClO**₄ involves O₂ activation and formation of a peroxo species [22]. DFT methods used in that system provided evidence of a transition state energy for O₂ activation that was decreased by \sim 9 kcal upon axial chloride ligand binding to the Cu(II) center. In the current study, DFT methods have been used to examine the direct attack of O₂ on the central carbon of the enolate ligand leading to peroxo formation as a function of the ligands coordination to Cu(II) center. The calculations started from 3-ClO₄ having the coordinated perchlorate anion and examined how replacement of this axial ligand with solvent (CH₃CN) or chloride as shown in Schemes 4 and 5, and the addition of a sixth water ligand, affect the transition state energy for peroxo formation. The lowest energy pathways for peroxo formation from 3-ClO₄ are facilitated by the presence of a water ligand which can form a hydrogen bond with O2 as it attacks the central carbon atom of the enolate and transforms into the peroxo group. Notably, the overall lowest transition state energy for peroxo formation, as computed with respect to the reactant state, was found for the perchlorate axial ligand (18.1 kcal/mol), similar values were computed for chloride (21.8 kcal/mol) and acetonitrile (23.0 kcal/mol) ligands. For each axial ligand, the addition of water lowers the activation barrier for peroxo formation by > 5.6 kcal/mol. Overall, for the conditions most relevant to experiment (involving addition of Bu₄NCl·0.5H₂O), addition of both water and chloride is projected to lower the barrier for O_2 activation for 3-ClO₄ from ~34 to 22 kcal/mol.

Representations of the DFT generated **3-H₂O-O₂**, **3-H₂O-P1**, and **3-Cl-H₂O-P1** species are shown in Fig. 4. The hydrogen bonding interactions between water and O₂ facilitate both the approach of O₂ and stabilize the peroxo species with heteroatom distance of 2.8–3.1 Å. This occurs with the water molecule either coordinated (**3-H₂O-P1**) or released from (**3-Cl-H₂O-P1**) the Cu(II) center.

Following peroxo formation, rearrangement of the peroxo ligand to a bridging interaction with the Cu(II) center can lead to diphenylpropanetrione formation as previously described for $1-ClO_4$ (Scheme 6) [22]. Alternatively, C—C cleavage directly from structures such as $3-Cl-H_2O$ -**P1** can lead to carboxylic acid and α -ketoacid product formation. The product mixtures analyzed for $3-ClO_4$ in the absence and presence of added chloride ion are consistent with a predominant diphenylpropanetrione pathway (Figs. S3 and S4).

3.5. Effects of added benzoate anion on the O_2 reactivity of **1-ClO₄** and **3-ClO₄**

Benzoate/benzoic acid is produced in the O₂-dependent C—C cleavage reactions of **1-ClO₄** and **3-ClO₄**. Previously we reported that addition of tetrabutylammonium benzoate to **1-ClO₄** in CH₃CN likely results in coordination of the anion in the axial position similar to chloride (**1-OBz**, Fig. 5(a); log K = 2.81(2)) but unlike chloride does not reduce the induction phase or enhance the rate of the first-order decay process [22]. Notably, DFT studies had suggested that while benzoato coordination should lower the O₂ activation barrier similar to chloride, a subsequent step involving O—O and O-Cl cleavage is expected to provide a lower energy pathway in the chloride-containing system [22]. The difference in O₂ activation upon benzoate addition led us to reexamine the reactivity of both **1-ClO₄** and **3-ClO₄** with benzoate using various approaches.

As shown in Fig. 5(b), unlike chloride, which produces a rapid decay

Scheme 6. Peroxo decomposition to products for 3-Cl-H₂O.

Fig. 5. a) Drawing of proposed benzoato adduct (1-OBz). b) Plot of absorbance (357 nm) versus time for the reaction of crystalline $1-ClO_4$ with O_2 in dry CH_3CN in the absence and presence of one equivalent of tetrabutylammonium benzoate or chloride at 25 °C.

Fig. 6. ESI-MS spectrum of the reaction mixture of 1-ClO₄ with added tetrabutylammonium benzoate in CH₃CN after stirring for 16 h.

in the $\pi \to \pi^*$ absorption band of **1-ClO₄** in the presence of O₂, the addition of benzoate anion at the same concentration produces only a very slow decay process. Notably, ESI-MS analysis of this reaction mixture revealed a new cluster at m/z 848.2 (Fig. 6), consistent with the monocation formulation [(6-Ph₂TPA)Cu(PhC(O)C(OC(O)-Ph)C(O) Ph)]⁺ wherein the chloride substituent of the diketonate ligand has undergone substitution with benzoate. Identification of this cation indicates that the Cu(II) center facilitates the diketonate chloride exchange reactivity, as this reaction does not occur upon treatment of the neutral chlorodiketone with tetrabutylammonium benzoate in CH₃CN (Fig. S8). Based on spectroscopic data previously reported which suggests benzoato coordination to the Cu(II) center [22], we propose a reaction pathway as is outlined in Scheme 7. Organic recovery studies of a reaction mixture containing 1-ClO₄ and two equivalents of tetrabutylammonium benzoate stirred under air for 16 h yielded a product mixture comprised of unreacted chlorodiketone and 2-(benzoyloxy)-1,3diphenyl-1,3-propanedione as major species and oxidative C-C bond cleavage products (benzil, benzoic anhydride) in lesser amounts (Fig. S9). As expected, performing the same reaction under N₂ yields only unreacted chlorodiketone and 2-(benzoyloxy)-1,3-diphenyl-1,3propanedione (Fig. S10). We note that the benzoyloxy-substituted

diketone was independently synthesized [28] and characterized (Figs. S11–S13) to confirm its formulation.

To gain insight into the potential oxidative C—C cleavage reactivity of **4**, the Cu(II) benzoyloxy diketonate complex was independently synthesized as outlined in Scheme S1. This complex was characterized by elemental analysis, X-ray crystallography, EPR, UV–Vis, ESI-MS and FT-IR (Figs. S14–S17). One of the two independent cations in the asymmetric unit of **4** is shown in Fig. 7. The Cu(II) center exhibits a sixcoordinate geometry, with two weakly interacting phenyl-appended pyridyl donors (Cu1A-N3A: 2.458(3) Å; Cu1A-N4A: ~2.63 Å). The equatorial plane contains two Cu(II)-N bonds (1.986(3) Å; 2.066(3) Å) bonds, and the Cu—O bonds of the chelated diketonate moiety (Cu—O 1.920(2) and 1.929(2) Å, respectively). Overall, the structural features of **4** are very similar to those of the cationic portion of **1-ClO**₄, with the only difference being an additional axially interacting phenyl-appended pyridine donor (**1-ClO**₄: ~3.09; **4**: ~2.63 Å).

The ESI-MS of the **4** contains the expected pattern at $[848.2 m/z]^+$ (Fig. S14), which is identical to that found in the reaction mixture generated from addition of tetrabutylammonium benzoate to **1-ClO**₄ in CH₃CN. The absorption spectrum of **4** contains a π - π * band at 361 nm (Fig. S15). The molar absorptivity for this band (~11,000 M⁻¹cm⁻¹) is

Scheme 7. Proposed benzoato coordination and diketonate substitution reactivity for 1.

Fig. 7. Representation of one of the two independent cations in the asymmetric unit of **4**. Hydrogen atoms have been omitted for clarity. Ellipsoids are plotted at the 50% probability level.

similar to that of **1-ClO₄** (10,200 M⁻¹cm⁻¹). The solid-state IR spectrum of **4** contains a benzoyloxy carbonyl vibration at 1740 cm⁻¹ (Fig. S16). An EPR spectrum collected as a frozen sample (1:1 CH₃CN:toluene at 12 K; Fig. S17) is consistent with an axial Cu(II) center, with $g_{||} \sim 2.26$, $g_{\perp} \sim 2.05$, and $A_{||} \sim 188$ Gauss.

The reactivity of **4** with O₂ was examined in the absence and presence of added chloride ion at 25(1) °C. After ~14 h, **4** exhibited no reaction (Fig. S17). This is like the results with **1-ClO**₄, where no reaction was observed in the absence of added chloride ion. In contrast, a reaction mixture containing **4** in the presence of one equivalent of tetrabutylammonium chloride showed a slow decay of the $\pi \rightarrow \pi^*$ diketonate absorption over the same period. Recovery of the organic products derived from the benzoyloxy diketone showed the presence of benzoic anhydride, benzil and unreacted 2-(benzoyloxy)-1,3-diphenyl-1,3-propanedione (Scheme 8; Fig. S18). These products indicate that the addition of chloride anion facilitates slow oxidative cleavage in the benzoyloxy-substituted derivative, albeit with significantly lower overall reactivity than the corresponding 2-chloro-1,3-diphenyl-1,3-propanedione.

Scheme 8. Reactivity of 6-Ph₂TPA-ligated Cu(II) benzoyloxy diketonate complex 4 with O_2 .

The reactivity of bpy-ligated **3-ClO₄** in the presence of benzoate anion under O₂ has not been previously examined. As shown in Fig. 8, treatment of **3-ClO₄** with tetrabutylammonium benzoate produced a slower decay relative to the same system containing added chloride. It should be noted that unlike the benzoate-containing reaction of **1-ClO₄**, the analogous reaction with **3-ClO₄** did go to completion after ~5000 s at 25(1) °C. Organic recovery experiments performed for the reaction of

Fig. 8. Plot of absorbance (357 nm) vs time for the reaction of crystalline **3-ClO**₄ with O₂ in dry CH₃CN in the absence and presence of 1.0 eq of tetrabutylammonium benzoate or chloride at 25(1) °C.

Scheme 9. Independent synthesis of 5.

Fig. 9. A representation of the cationic portion of 5. Hydrogen atoms have been omitted for clarity. Ellipsoids are plotted at the 50% probability level.

3-ClO₄ with O₂ in the presence of two equivalents of tetrabutylammonium benzoate revealed the formation of oxidative cleavage products – benzoic anhydride, benzoic acid, and a small amount of benzil, with no evidence for formation of the benzyloxy-substituted diketone (Fig. S19). We note that performing the same reaction under N₂ results in the formation of a significant amount benzoyloxy-substituted diketone (Fig. S20).

The decrease in the induction phase for the reaction of 3-ClO_4 with O_2 in the presence of benzoate anion may be due to the presence of

Fig. 10. Plot of absorbance (354 nm) vs time for the reaction of crystalline 5 with O_2 in dry CH_3CN in the absence and presence of one equivalent of tetrabutylammonium chloride at 25 °C.

water. As outlined above, water reduces the induction phase for the O_2 activation reaction of **3-ClO₄** in the absence of any added anions (*vida supra*). ¹H NMR and FTIR analysis (Figs. S21 and S22) indicate the presence of ~0.2 eq of H₂O per equivalent of the benzoate salt.

For comparison to the chemistry of **4**, we independently synthesized and characterized the bpy-ligated Cu(II) benzoyloxy diketonate complex **5** (Scheme 9). The cationic portion of **5** is shown in Fig. 9. The Cu(II) exhibits a slightly distorted square pyramidal Cu(II) center ($\tau = 0.08$) [43] with similar Cu—N(1.9993(16) and 1.9888(16) Å) and Cu—O (1.9262(14) and 1.9260(14) Å) distances in the equatorial plane. Notably, a water molecule is coordinated to the Cu(II) center, with a Cu—O distance of 2.2637(15) Å. This ligand is relevant to the proposed water coordination that may impact O₂ activation in anion and solventcoordinated forms of **3**.

In terms of spectroscopic properties, the solid-state IR spectrum of **5** contains a benzoyloxy carbonyl vibration at 1730 cm⁻¹ (Fig. S23). The ESI-MS of **5** in CH₃CN displayed the expected cationic isotope cluster at *m*/*z* 562.2 (Fig. S24). The absorption spectrum of **5** contains a diketonate π - π * band at 354 nm (Fig. S25). EPR data for **5** collected on sample dissolved in 1:1 CH₃CN:toluene at 12 K indicated a highly axial Cu(II) center with g_{||} ~ 2.25, g_⊥ ~ 2.06 and A_{||} ~ 186 Gauss (Fig. S26).

The reactivity of **5** with O_2 was examined in the absence and presence of added chloride anion at 25 °C. After ~14 h, **5** exhibited no reaction (Fig. 10). This is like the results with **4**, where no reaction was observed in the absence of added chloride ion. A reaction mixture containing one equivalent of **5** in the presence of two equivalents of tetrabutylammonium chloride showed a slow decay of the $\pi \rightarrow \pi^*$ diketonate absorption band over the same period. Ligand recovery from this reaction showed the presence of diketonate oxidative cleavage products, including benzoic acid, benzoic anhydride and benzil (Scheme 10; Fig. S27). This result demonstrates that chloride anion and/or the associated water within the salt can facilitate O_2 activation leading to C—C cleavage.

4. Discussion

4.1. Novel coordination chemistry contributions

Copper(II) salts are used extensively as catalysts in synthetic reactions employing O_2 as the terminal oxidant. A typical approach toward identifying the best catalyst for a particular oxidation is to screen

Scheme 10. Reaction of 5 with O2 in the presence of two equivalents of Bu4NCl.

Scheme 11. Summary of reactions of divalent metal chlorodiketonate complexes with O2.

the reaction using various Cu(I) and Cu(II) salts. For the most part, this type of approach focuses on optimizing product yield. To date, there have been few systematic studies to examine the effects on various anions on O_2 activation involving copper salts [5,15–17].

The chemistry outlined herein reveals the following primary findings:

(1) The bpy-ligated Cu(II) chlorodiketonate complex **3-ClO**₄ is inherently more reactive with O₂ than 6-Ph₂TPA-ligated analog

1-ClO₄ at 25 °C. No added chloride is needed to facilitate O_2 reactivity for **3-ClO₄** but added water does enhance the rate of reactivity via hydrogen bonding interactions with O_2 and a subsequently formed peroxo species. Overall, these results show that the supporting chelate ligand and solvent provide important contributions in facilitating O_2 reactivity with the Cu(II) chlorodiketonate moiety.

(2) The bpy-ligated Cu(II) chlorodiketonate complex exhibits enhanced O₂ reactivity in the presence of water whereas no similar effect was found for the 6-Ph₂TPA analog. We hypothesize that this is because a coordination position is readily available for H_2O binding in **3-ClO₄** whereas in **1-ClO₄** a H_2O ligand must compete with donors from the supporting 6-Ph₂TPA chelate ligand.

- (3) The chloride substituent in the diketonate ligand of 1-ClO₄ and 3-ClO₄ will undergo displacement upon treatment of each complex with tetrabutylammonium benzoate. The Cu(II) benzoyloxy diketonate complexes 4 and 5 are formed, the formulations of which have been confirmed through independent synthesis and characterization.
- (4) The Cu(II) benzoyloxy diketonate complexes 4 and 5 are unreactive with O₂ at 25 °C. Addition of chloride anion enhances the O₂ reactivity of 4 and 5, however both are significantly less reactive in terms of producing oxidative C—C bond cleavage products than the chlorodiketonate analogs (1-ClO₄ and 3-ClO₄).

Mononuclear Cu(II) dibenzoylmethane complexes supported by a 2,2'-bipyridine or phenanthroline ligand are relatively rare [45–50], with our laboratory reporting the only O₂ reactive complexes (**1-ClO₄** and **3-ClO₄**) to date. The formation of the α -benzoyloxydiketonate complexes (**4** and **5**) via substitution of the diketonate chloro substituent in **1-ClO₄** and **3-ClO₄** is facilitated by the presence of the Cu(II) center. To our knowledge, these are the first transition metal complexes having an α -benzoyloxydiketonate ligands. Typically, α -acyloxydiketones are formed via reactions involving the unsubstituted diketone, hypervalent iodine reagents and a halide source [46,51–55]. The observed slow O₂ reactivity of **4** and **5** relative to **1-ClO₄** and **3-ClO₄** in the presence of added chloride anion to provide oxidative cleavage products indicates that the nature of the diketonate substituent can be used to tune O₂ reactivity in these novel Cu(II) complexes.

4.2 O₂-dependent C-C cleavage and diketones

Studies of the O2-dependent reactivity of divalent metal chlorodiketonate complexes such as those described herein contribute to understanding fundamental mechanistic issues related to O2 activation and C--C bond cleavage product formation. Such investigations are relevant toward gaining insight relevant to the reaction catalyzed by diketone dioxygenase (Dke1) [20] and synthetically useful M(II)/O2mediated diketone cleavage reactions [5]. To date, very few synthetic first row metal complexes have been reported that exhibit O2-dependent β -diketone oxidative cleavage [56–61]. It is notable that divalent metal chlorodiketonate complexes show differences in reactivity with O2 depending on the nature of the metal ion (Scheme 11). A coordinatively saturated Ni(II) chlorodiketonate complex (6, Scheme 11) requires UVlight to initiate O_2 reactivity [62]. In this case, the product distribution suggests a reaction pathway that involves a Ni(I)-chlorodiketonate radical species which subsequently reacts with O₂ to give C-C cleavage products (benzoic acid). The Cu(II) systems outlined herein are thermally reactive with O2, with reaction occurring spontaneously or upon the introduction of chloride anion [21,22]. Nitrogen donor ligandsupported Co(II) chlorodiketonate complexes such as 7 (Scheme 11) require illumination to undergo reaction with O₂ [63]. The product distributions and ¹⁸O incorporation in the Co(II) complex-derived products are like those identified for the Cu(II) chlorodiketonate derivative 1-ClO₄. Both systems facilitate O-O and C-Cl bond cleavage primarily leading to diphenylpropanetrione formation from which C-C cleavage proceeds likely via reaction with HOCl generated in the reaction mixture. Overall, it is evident that the ligand composition within the primary coordination sphere and the nature of the divalent metal ion impact the pathway leading to O2 activation and C-C cleavage in these systems. For the chlorodiketonate substrates studied herein, it is important to remember that in the absence of a metal ion, no oxygen incorporated products are generated [64].

CRediT authorship contribution statement

Josiah G.D. Elsberg: Writing – original draft, Visualization, Methodology, Investigation. Tomasz Borowski: Writing – original draft, Visualization, Methodology, Investigation. Eric W. Reinheimer: Methodology. Lisa M. Berreau: Writing – original draft, Supervision, Project administration, Funding acquisition, Formal analysis, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data availability

Data will be made available upon request. Computational structures are available at 10.19061/iochem-bd-4-70.

Acknowledgments

The authors thank the National Science Foundation for support of this work (CHE-1664977) and for funding in support of the acquisition of NMR and X-ray crystallography instruments (CHE-1429195; CHE-1828764) used for data collection in this work. We gratefully acknowledge Polish high-performance computing infrastructure PLGrid (HPC Centers: ACK Cyfronet AGH) for providing computer facilities and support within computational grant no. PLG/2023/016769. X-ray crystallographic studies of 4 were performed at the University of Montana (NIH, COBRE NIGMS P30GM140963).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.ica.2024.122203.

References

- R. Trammell, K. Rajabimoghadam, I. Garcia-Bosch, Chem. Rev. 119 (2019) 2954–3031.
- [2] H. Liu, M. Wang, H. Li, N. Luo, S. Xu, F. Weng, J. Catal. 346 (2017) 170–179.
- [3] Y.F. Liang, N. Jiao, Acc. Chem. Res. 50 (2017) 1640–1653.
- [4] C. Tang, X. Qiu, Z. Cheng, N. Jiao, Chem. Soc. Rev. 50 (2021) 8067–8101.
- [5] C. Zhang, P. Feng, N. Jiao, J. Am. Chem. Soc. 135 (2013) 15257–15262.
- [6] J. Zhang, C. Liu, M. Yang, Z. Fang, K. Guo, Tetrahedron Lett. 61 (2020) 152555.
 [7] Y. Yu, Y. Zhang, C. Sun, L. Shi, W. Wang, H. Li, J. Org. Chem. 85 (2020)
- 2725–2732. [8] C. Xu, Y. Wang, L. Bai, J. Org. Chem. 85 (2020) 12579–12584.
- [9] M. Brendel, P.R. Sakhare, G. Dahiya, P. Subramanian, K.P. Kaliappan, J. Org. Chem. 85 (2020) 8102–8110.
- [10] N. Vodnala, R. Gujjarappa, C.K. Hazra, D. Kaldhi, A.K. Kabi, U. Beifuss, C. C. Malakar, Adv. Synth. Catal. 361 (2019) 135–145.
- [11] L. Deng, B. Huang, Y. Liu, Org. Biomol. Chem. 16 (2018) 1552-1556.
- [12] C. Liu, Z. Yang, Y. Zeng, Z. Fang, K. Guo, Org. Chem. Front. 4 (2017) 2375-2379.
- [13] X. Chen, Y. Peng, Y. Li, M. Wu, H. Guo, J. Wang, S. Sun, RSC Adv. 7 (2017)
- 18588–18591.
- [14] W.B. Cao, X.Q. Chu, Y. Zhou, L. Yin, X.P. Xu, S.J. Ji, Chem. Commun. 53 (2017) 6601–6604.
- [15] K. Fagnou, M.Lautens, Angew. Chem. Int. Ed. 41 (2002) 26-47.
- [16] H. Yi, Z. Liao, G. Zhang, G. Zhang, C. Fan, X. Zhang, E.E. Bunel, C.W. Pao, J.F. Lee, A. Lei, Chem. Eur. J. 21 (2015) 18925–18929.
- [17] Y. Deng, G. Zhang, X. Qi, C. Liu, J.T. Miller, A.J. Kropf, E.E. Bunel, Y. Lan, A. Lei, Chem. Commun. 51 (2015) 318–321.
- [18] P.J. Sarver, V. Bacauanu, D.M. Schultz, D.A. DiRocco, Y.-H. Lam, E.C. Sherer, D.W. C. MacMillan, Nat. Chem. 12 (2020) 459–467.
- [19] D.E. Diaz, D.A. Quist, A.E. Herzog, A.W. Schaefer, I. Kipouros, M. Bhadra, E. I. Solomon, K.D. Karlin, Angew. Chem. Int. Ed. Engl. 58 (2019) 17572–17576.
- [20] G.D. Straganz, B. Nidetzky, J. Am. Chem. Soc. 127 (2005) 12306–12314.
 [21] C.J. Allpress, A. Milaczewska, T. Borowski, J.R. Bennett, D.L. Tierney, A.M. Arif, L.
- M. Berreau, J. Am. Chem. Soc. 136 (2014) 7821–7824.
- [22] S.L. Saraf, A. Milaczewska, T. Borowski, C.D. James, D.L. Tierney, M. Popova, A. M. Arif, L.M. Berreau, Inorg. Chem. 55 (2016) 6916–6928.

J.G.D. Elsberg et al.

- [23] J.G.D. Elsberg, S.N. Anderson, D.L. Tierney, E.W. Reinheimer, L.M. Berreau, Dalton Trans. 50 (2021) 1712–1720.
- [24] D.B.G. Williams, M. Lawton, J. Org. Chem. 75 (2010) 8351-8354.
- [25] M.M. Makowska-Grzyska, E. Szajna, C.E. Shipley, A.M. Arif, M.H. Mitchell, J. A. Halfen, L.M. Berreau, Inorg. Chem. 42 (2003) 7472–7488.
- [26] Z.S. Zhou, L. Li, X.H. He, Chin. Chem. Lett. 23 (2012) 1213–1216.
- [27] W.C. Wolsey, J. Chem Ed. 50 (1973) 335–337.
- [28] D. Barillier, P. Riolt, J. Vialle, Bull. Chem. Fr. 3–4 (1976) 444–448.
 [29] A. Giovannitti, S.M. Seifermann, A. Bihlmeier, T. Muller, F. Topic, K. Rissanen,
- M. Nieger, W. Klopper, S. Bräse, Eur. J. Org. Chem. (2013) 7907–7913. [30] G.M. Sheldrick, University of Göttinggen, Germany, 1996.
- [31] O.V. Dolomanov, L.J. Bourhis, R.J. Gildea, J.A.K. Howard, H. Puschmann, J. Appl. Cryst. 42 (2009) 339–341.
- [32] G.M. Sheldrick, Acta Crystallogr. A 71 (2015) 3-8.
- [33] A.L. Spek, Acta Crystallogr. C 71 (2015) 9–18.
- [34] A.L. Spek, Acta Crystallogr. D Biol. Crystallogr. 65 (Pt 2) (2009) 148-155.
- [35] Bruker, APEX3, Bruker AXS Inc., Madison, Wisconsin, USA. 2016.
- [36] G.M. Sheldrick, Acta Crystallogr. A (2008) 64.
- [37] CrysAlisPro 171 (40) (2019) 45a.
- [38] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, G.A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B.G. Janesko, R. Gomperts, B. Mennucci, H.P. Hratchian, J.
 - V. Ortiz, A.F. Izmaylov, J.L. Sonneherg, D. Williams-Young, F. Ding, F. Lipparini,
 - F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota,
 - G. Zaki Zewski, J. Gao, N. Rega, G. Zneng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai,
 - T. Vreven, K. Throssell, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M.
 - J. Bearpark, J.J. Heyd, E.N. Brothers, K.N. Kudin, V.N. Staroverov, T.A. Keith,
 - R. Kobayashi, J. Normand, K. Raghavachari, A.P. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, J.M. Millam, M. Klene, C. Adamo, R. Cammi, J.W. Ochterski, R.L. Martin, K. Morokuma, O. Farkas, J.B. Foresman, D.J. Fox, Gaussian 16,
- Revision C.01, Gaussian Inc, Wallingford CT, 2016.
- [39] G. Scalmani, M.J. Frisch, J. Chem. Phys. 132 (2010) 114110.
- [40] A.D. Becke, J. Chem. Phys. 98 (1993) 5648-5652.
- [41] S. Grimme, S. Ehrlich, L. Goerigk, J. Comp. Chem. 32 (2011) 1456–1465.
- [42] S. Grimme, J. Antony, S. Ehrlich, H. Kreig, J. Chem. Phys. 132 (2010) 154104.

- [43] A.W. Addison, N.T. Rao, J. Reedijk, J. van Rijn, G.C. Verschoor, J. Chem. Soc. Dalton Trans. (1984) 1349–1356.
- [44] I. Persson, D. Lundberg, E.G. Bajnoczi, K. Klementiev, J. Just, K.G.V. Sigfridsson Clauss, Inorg. Chem. 59 (2020) 9538–9550.
- [45] Y. Yamane, M. Miyazaki, S. Ikeda, N. Yamaji, Chem. Pharm. Bull. 18 (1970) 1589–1594.
- [46] K.M. Purohit, D.V.R. Rao, Indian J. Chem. A 21A (1982) 437-439.
- [47] G.N. Rao, J.S. Thakur, Indian J. Chem. 12 (1974) 861–864.
- [48] M. Munakata, M. Harada, S. Niina, Inorg. Chem. 15 (1976) 1727–1729.
 [49] K. Gopalakrishnan, U. Chudasama, P.K. Bhattacharya, J. Indian Chem. Soc. 56 (1979) 445–447.
- (19/9) 443–447.
 [50] H. Oluvatola Omoregie, N. Obi-Egbedi, J. Woods, Int. J. Chem. 6 (2014) 71–82.
- [51] B. Podolesov, J. Org. Chem. 49 (1984) 2644–2646.
- [52] M. Miyamoto, M.M. Hoque, Y. Senoh, M.I. Ali, H. Nemeto, T. Mandal, Eur. J. Org. Chem. (2018) 2841–2845.
- [53] W.-B. Liu, C. Chen, Q. Zhang, Z.-B. Zhu, Beilstein J. Org. Chem. 7 (2011) 1436–1440.
- [54] M. Moriarity, O. Prakash, Org. React. 54 (2004) 273-418.
- [55] M. Fujio, A. Moriyasu, T. Tatsuo, I. Juichi, Bull. Chem. Soc. Jpn 51 (1978) 335–336.
- [56] I. Siewert, C. Limberg, S. Demeshko, E. Hoppe, Chem. Eur. J. 14 (2008) 9377–9388.
- [57] I. Siewert, C. Limberg, Angew. Chem. Int. Ed. 47 (2008) 7953–7956.
- [58] H. Park, M.M. Bittner, J.S. Baus, S.V. Lindeman, A.T. Fiedler, Inorg. Chem. 51 (2012) 10279–10289.
- [59] K. Schroder, B. Join, A.J. Amali, K. Junge, X. Ribas, M. Costas, M. Beller, Angew. Chem. Int. Ed. Engl. 50 (2011) 1425–1429.
- [60] S. Hoof, M. Sallmann, M. Herwig, B. Braun-Cula, C. Limberg, Dalton Trans. 46 (2017) 16792–16795.
- [61] C. Yang, D. Liu, T. Wang, F. Sun, S. Qui, G. Wu, Chem. Commun. 57 (2021) 9462–9465.
- [62] C.J. Allpress, A.M. Arif, D.T. Houghton, L.M. Berreau, Chem. Eur. J. 17 (2011) 14962–14973.
- [63] S.N. Anderson, J.G.D. Elsberg, L.M. Berreau, Dalton Trans. 52 (2023) 4152-4160.
- [64] B. Košmrlj, B. Sket, Org. Lett. 9 (2007) 3993–3996.